

Towards A Non-tracking Web

Thesis approved by the

Department of Computer Science

of the University of Kaiserslautern (TU Kaiserslautern)

for the award of the Doctoral Degree

Doctor of Engineering (Dr.-Ing.)

by

Mr İstemi Ekin Akkuş

Date of the oral defense: 21.03.2016

Dean of the department: Prof. Dr. rer. nat. Klaus Schneider

1. Reviewer: Prof. Dr. Paul Francis

2. Reviewer: Dr. Deepak Garg

3. Reviewer: Dr. Claude Castelluccia

D 386

Towards A Non-tracking Web

by

İstemi Ekin Akkuş

© 2016
İstemi Ekin Akkuş

ALL RIGHTS RESERVED

ii

To Emilia, my family and friends...

iv

Acknowledgements

First and foremost, I would like to thank my advisor, Paul Francis. He allowed me to
explore and find my own path through the unknown. When I got lost, his feedback and
comments made me find the next steps. Every time I talked to him, I felt that I learned
something new, obtained a new perspective and came to understand something that I
did not understand before. I am forever grateful.

I also want to thank Deepak Garg. He was more than willing to spend time and effort
to help me learn new tools and techniques. He provided invaluable feedback on my
work and how I could improve it.

Rose Hoberman taught me a huge amount on how to communicate my ideas and
thoughts. She helped me learn how to write papers and present them. All suggestions
she made not only improved my work, but also helped me to think in different ways
and organize my thoughts.

Saikat Guha, my host at Microsoft Research India, has helped me explore interesting
ideas. During my internship, I learned not only about new technical tools, but also
on different approaches to solve problems. I would like to also thank my host at the
International Computer Science Institute, Nicholas Weaver, for enabling me to pursue
and implement my ideas that later became part of this thesis.

All MPI-SWS faculty, staff, students and postdocs have made my time there enjoyable,
be it through academic discussions, social events or just brief interactions. I thank to all
those with whom my time at MPI-SWS has coincided. Special thanks to my office mate,
Alexey Reznichenko, with whom I had a considerable amount of discussions about
research and life in general. Similar discussions were also held with Scott Kilpatrick,
Pedro Fonseca, Beta Ziliani, Georg Neis, Nuno Santos, Cheng Li, Manohar Vanga, Eslam
Elnikety, Pramod Bhatotia, Bimal Viswanath, Anjo Vahldiek-Oberwagner, Reinhard
Munz, Lisette Espı́n, Nancy Estrada, Juhi Kulshrestha, Alexander Wieder, Mainack
Mondal, Ezgi Çiçek, Paarijaat Aditya, Arpan Gujarati, Aastha Mehta, Felipe Cerqueira,
Viktor Erdélyi, Johannes Kloos, Natacha Crooks, Ruichuan Chen, Stevens Le Blond,
Allen Clement, Arthur Chargueraud, Matthew Hammer and Roly Perera. All our
interactions made me feel that I am not alone in this journey, and for that, I thank them.

I thank Vera Laubscher, Susanne Girard, Maria-Louise Albrecht, Corinna Kopke,

v

Claudia Richter, Brigitta Hansen and Roslyn Stricker from the office staff as well as
Christian Mickler, Tobias Kaufmann, Carina Schmitt and Christian Klein from the IST
staff. While my requests never seemed to stop, they always found ways to accommodate
me. More than that, I enjoyed our chats and interactions.

My family has always supported me no matter what (and I know they will continue
to do so): my mom, dad, sister as well as my uncles, aunts and cousins. Their love made
me feel safe. Their encouragements gave me strength. Every time I talked with them, I
instantly felt better. I only wish that my grandma would have also seen this and that she
would have been smiling.

I would like to specially thank my friends, Hüseyin and Zeynep Çankaya, for being
there for me when I needed a break and for our trips to various locations to experience
the world. I only hope that we will have more of that in the future. I also would like to
thank Alex Kantchelian for interesting discussions and outings when I was in Berkeley.
It certainly made my stay much more fun and enjoyable.

Last but the most, I would like to express my endless gratitude for Emilia Esposito.
Without her love, support and care, this thesis would never have been completed. She
made me smile when I was crying. She held my hand when I was afraid. She gave me a
hug when I needed it the most. I can only hope to be as kind as she is. Her existence and
smile were the biggest motivations for me to make progress.

vi

Abstract

Today, many publishers (e.g., websites, mobile application developers) commonly use
third-party analytics services and social widgets. Unfortunately, this scheme allows
these third parties to track individual users across the web, creating privacy concerns
and leading to reactions to prevent tracking via blocking, legislation and standards.
While improving user privacy, these efforts do not consider the functionality third-party
tracking enables publishers to use: to obtain aggregate statistics about their users and
increase their exposure to other users via online social networks. Simply preventing
third-party tracking without replacing the functionality it provides cannot be a viable
solution; leaving publishers without essential services will hurt the sustainability of the
entire ecosystem.

In this thesis, we present alternative approaches to bridge this gap between privacy
for users and functionality for publishers and other entities. We first propose a general
and interaction-based third-party cookie policy that prevents third-party tracking via
cookies, yet enables social networking features for users when wanted, and does not
interfere with non-tracking services for analytics and advertisements. We then present
a system that enables publishers to obtain rich web analytics information (e.g., user
demographics, other sites visited) without tracking the users across the web. While this
system requires no new organizational players and is practical to deploy, it necessitates
the publishers to pre-define answer values for the queries, which may not be feasible for
many analytics scenarios (e.g., search phrases used, free-text photo labels). Our second
system complements the first system by enabling publishers to discover previously
unknown string values to be used as potential answers in a privacy-preserving fashion
and with low computation overhead for clients as well as servers. These systems suggest
that it is possible to provide non-tracking services with (at least) the same functionality
as today’s tracking services.

Contents

List of Figures xiii

List of Tables xiv

1 Introduction 1
1.1 An Evolving Web . 1
1.2 Essential Web Services & Third-party Tracking 2
1.3 Thesis Research & Contributions: Non-tracking Web Systems 5
1.4 Organization . 8

2 A General and Interaction-based Third-party Cookie Policy 10
2.1 Introduction . 11
2.2 Contributions . 13
2.3 Goals . 14
2.4 Assumptions . 14
2.5 Design . 16

2.5.1 Detecting Third-party Requests & Removing Cookies 16
2.5.2 Click as User Interaction and Reload-on-click 17
2.5.3 Two-click Control for Social Widgets 17
2.5.4 Generalization . 19
2.5.5 Social Widgets versus Advertisements 19
2.5.6 Third-party Cookie Access . 21
2.5.7 Limitations . 21

2.6 Implementation . 22
2.7 Evaluation . 24

2.7.1 Methodology . 24
2.7.2 Efficacy of the Heuristic . 24
2.7.3 Performance Overhead . 33

2.8 Discussion . 37
2.8.1 Robustness of the Heuristic . 37
2.8.2 Reloading Advertisement Iframes with Cookies 38
2.8.3 Evercookies . 39
2.8.4 Cookie Synching . 39
2.8.5 Behavioral Advertisements & Extended Web Analytics 39

x

2.9 Conclusion & Future Work . 40

3 Non-tracking Web Analytics 42
3.1 Introduction . 43
3.2 Contributions . 45
3.3 Definitions & Components . 46
3.4 Goals . 47

3.4.1 Functionality Goals . 47
3.4.2 Privacy Goals . 48

3.5 Assumptions . 49
3.5.1 Client . 49
3.5.2 Data Aggregator . 50
3.5.3 Publisher . 51
3.5.4 Incentives . 52

3.6 System Overview . 52
3.6.1 Audits . 55

3.7 Design . 56
3.7.1 Differential Privacy Background 57
3.7.2 Queries . 58
3.7.3 Query Response . 60
3.7.4 Audit Response . 61
3.7.5 Noise Generation . 64

3.8 Analysis . 68
3.8.1 Data Aggregator . 68
3.8.2 Publisher . 69
3.8.3 Client . 75

3.9 Implementation & Evaluation . 75
3.9.1 Implementation . 75
3.9.2 Example Scenario . 76
3.9.3 Deployment . 79

3.10 Conclusion & Future Work . 80

4 Privacy-preserving String Discovery 83
4.1 Introduction . 84

4.1.1 Background: Privacy-preserving Analytics Systems 85
4.2 Contributions . 87
4.3 Definitions & Components . 90
4.4 Goals . 91

4.4.1 Privacy Goals . 91
4.4.2 Functionality Goals . 93

4.5 Assumptions . 93
4.5.1 SplitX . 94
4.5.2 Client . 94
4.5.3 Aggregator & Proxies . 94

xi

4.5.4 String Values . 95
4.6 System Overview . 95
4.7 Building Blocks . 98

4.7.1 XOR-Encryption: Split & Join . 98
4.7.2 Blind Comparison via pairwise-XOR and hash (PXH) 100
4.7.3 Noisy Threshold . 101

4.8 Design . 101
4.8.1 Initializing String Discovery . 102
4.8.2 Collecting Encrypted Strings . 104
4.8.3 Blindly Comparing & Counting Strings 105
4.8.4 Mirror Operation & Oblivious Noise 108
4.8.5 Other Details . 110

4.9 Optimizations . 110
4.9.1 Sample-Identify-Count-Filter (SICF) 110
4.9.2 Short Hashes . 111

4.10 Detecting Duplicates . 113
4.11 Analysis . 115

4.11.1 Tools . 116
4.11.2 Modeling Primitives . 119
4.11.3 Protocol Model & Verification Results 127
4.11.4 Informal Analysis of the Remaining Protocol 136

4.12 Evaluation . 139
4.12.1 Datasets . 140
4.12.2 Benefits of Optimizations . 141
4.12.3 Microbenchmarks . 142
4.12.4 Experiments with Real-world Data 144

4.13 Conclusion & Future Work . 147

5 Literature Survey 148
5.1 Third-party Tracking . 148
5.2 Web Analytics . 152
5.3 Privacy-preserving String Discovery . 155

6 Summary & Final Remarks 159

Bibliography 163

Curriculum Vitae 179

xii

List of Figures

1.1 Third-party tracking by data aggregators, online social networks and
advertisement networks. 3

2.1 Priv3+ options in Mozilla Firefox. 23
2.2 Priv3+ options in Google Chrome. 23

3.1 Operation of today’s tracking web analytics systems. 47
3.2 Query workflow of our system. 54
3.3 Auditing mechanism of our system. 56
3.4 Confidence level for the isolation attack via dropping target’s answer. . . 72
3.5 Probability density function of Laplace noise values. 80

4.1 Overview of our system’s operation. 96
4.2 Splitting and joining. 98
4.3 Mirror operation 1 in our privacy-preserving string discovery system. . 102
4.4 Initializing string discovery. 103
4.5 Collecting encrypted strings. 103
4.6 Counting and revealing strings. 104
4.7 Complete system for privacy-preserving string discovery. 109
4.8 Overview of our SICF heuristic. 112
4.9 An example of a constructor without a destructor: one-way hash function. 117
4.10 An example of a constructor with a destructor: symmetric encryption . . 117
4.11 An example of a constructor with equations: symmetric encryption . . . 118
4.12 Formal definition of splitting and joining. 120
4.13 Formal definition of the PXH operation. 121
4.14 Special channels to emulate the PXH comparison due to incomplete XOR-

functionality support in ProVerif. 123
4.15 Use of the special channels in each process. 123
4.16 Formal definition of linkability. 125
4.17 Formal definition of existence. 126
4.18 Adversary queries in our ProVerif model. 129
4.19 Speedup vs. number of hash buckets. 142
4.20 CPU time vs. number of strings. 146

xiii

List of Tables

2.1 Crawls & datasets for our evaluation. 25
2.2 Number of iframes recorded in successfully loaded pages. 27
2.3 Distribution by domain and category of single, third-party iframes. . . . 28
2.4 Distribution by domain and category of nested, third-party iframes. . . . 32
2.5 Number of nested iframes belonging to an online social network widget. 33
2.6 Distribution of iframes from social widget domains. 34
2.7 Distribution of iframes from advertisement domains. 35
2.8 Number of successfully loaded links. 36
2.9 Performance overhead of cookie policies. 37

3.1 Query fields . 58
3.2 Queries and associated parameters. 77
3.3 Bandwidth usage of the publisher and the data aggregator. 77
3.4 Number of clients having used search engines during our deployment. . 78

4.1 Process grammar in applied pi calculus. 116
4.2 Attacks found by ProVerif by various adversaries. 128
4.3 Client microbenchmarks. OT assumes 32-bit strings. Other operations

assume 100-byte strings. 143
4.4 Server microbenchmarks. OT assumes 32-bit strings. Other operations

assume 100-byte strings. 144
4.5 Memory overheads for privacy-preserving string discovery. 144

xiv

Chapter 1

Introduction

1.1 An Evolving Web

Ever since the beginning of the web, statistics about visitors or web analytics have been

important. Website publishers use web analytics information to analyze their traffic

and optimize their sites’ content accordingly. To achieve this goal, numerous analytics

software programs have been developed and have been at the disposal of publishers

since the early days [7, 28, 40, 41, 67]. By running these programs, publishers can obtain

statistics about users on their site, such as their page views, clickstreams, browsers,

operating systems and plugins as well as the visit frequency of returning visitors.

In recent years, the prevalence of mobile devices and the number of users accessing

the web using these devices have increased drastically. While the traditional web

analytics software can still be used for website visits with a browser running on a mobile

device, such devices are often used to access content and services of publishers with

stand-alone applications. As a result, the number of services that target specifically these

mobile applications and the analytics information has dramatically increased. Some

1

examples of these services are Flurry, Bango Dashboard, Localytics, Countly, Mobclix

and Google mobile analytics [8, 13, 21, 35, 37, 38].1

Another important aspect the publishers have almost always been interested in is

the interaction with their visitors. From simple guestbooks, where visitors could leave a

short message for the publishers, to forums and comments, where visitors could interact

with the publishers as well as other visitors, such interactive features have always

been an integral part of websites. Using the analytics tools described above, publishers

can track popular pages on their own sites via user interaction (e.g., comments, page

visits), and use this information to suggest new and interesting content. Perhaps, the

continuation of these features is the increasing prevalence of social widgets present on

web pages today [69, 144], which not only enable publishers and visitors to interact with

each other, but also allow visitors to share their interaction with other users.

1.2 Essential Web Services & Third-party Tracking

Today, however, publishers often outsource the above services to a third-party service

provider. This outsourcing is convenient for publishers, because they only have to install

a small piece of code (i.e., a JavaScript code snippet) provided by the service provider.

More importantly, this arrangement fills a gap in the existing first-party approaches

for web analytics or social interactions with users: First-party analytics solutions do

not provide potentially useful information, such as demographics of visitors (e.g., age,

gender, education level) or other sites visited by them. Similarly, interaction between

publishers and visitors through comments and page visits is usually limited to existing

visitors, and does not cover potential new users.

To obtain extended web analytics (e.g., user demographics, other sites visited), web

1There is no fundamental reason why software developers for regular desktop computers cannot use
such data aggregators to obtain analytics information.

2

Figure 1.1: Third-party tracking by data aggregators, online social networks and adver-
tisement networks.

publishers often use data aggregators such as comScore, Google or Quantcast [6, 62].

Such a data aggregator collects data from visitors of many publishers. This information

enables a data aggregator to infer extended web analytics information that goes beyond

traditional web analytics and includes user demographics. The aggregator then provides

the publishers with the analytics information of their sites in aggregate form. These

aggregators may also provide behavioral advertisements that are tailored to a user’s

interests based on her browsing history.

For interactions with visitors, publishers often use online social network (OSN) ser-

vices and employ social widgets from OSN providers, such as Facebook and Twitter.

These widgets help publishers to increase user engagement on their sites. Addition-

ally, these widgets increase the exposure of the site to more potential visitors, because

the interaction with social widgets propagate this action to more users via the OSN’s

structure.

3

This arrangement benefits not only the website publishers, application developers

and other analysts, but also the data aggregators and OSN providers: Every time a

user visits a publisher website, the data aggregator or the OSN provider learns about

this visit due to the loading of the third-party resource embedded on the publisher

website (e.g., a JavaScript code snippet, social widget) and can track the user across

the web (Figure 1.1). As a result, these entities obtain vast amounts of information

about users’ browsing behavior across the web and use this information via targeted

advertisements [16]. Compiling extended web analytics benefits the data aggregators

because they can sell this information to advertisers and publishers alike. Learning the

interactions with different publishers, the OSN providers get more detailed information

about a user’s behavior, which then can be combined with the information the user has

provided while using the OSN.

This arrangement, however, comes with a price for user privacy and raises concerns

about users being tracked while accessing publisher content. Such tracking enables

these third-party service providers to compile detailed behavior of individual users

with the sensitive information they obtain, and infer individual–not just aggregate–user

demographics [144]. Thus, these third parties are given a lot of information about users’

actions on the web and have to be trusted that they will not abuse it. This trust has been

violated in the past [33, 47, 49].

Tracking affects not only users, but also the data aggregators and OSN providers

themselves, who are often criticized for privacy violations due to tracking. In response to

these criticisms, researchers and industry have proposed methods to detect and prevent

tracking, including voluntary regulations by the industry to provide opt-out mechanisms

[10,11,50,66], the Do-Not-Track (DNT) initiative in the W3C and US FTC [55], and many

client-side tools, either to implement DNT [24, 52, 57], or to outright prevent tracking

using blacklists, which also include social widgets [15, 22, 23, 29, 55, 68, 70, 144].

4

While these methods protect privacy, they significantly reduce the benefits of analytics

and social widgets by limiting the information publishers can learn about their visitors

and by limiting the interaction between the visitors and the publisher, respectively.

To the extent that these efforts take hold, the ability for data aggregators to provide

extended analytics to publishers will be degraded, and OSN providers will no longer

be able to provide an appealing service for publishers to interact with their visitors and

attract new users.

1.3 Thesis Research & Contributions: Non-tracking Web Sys-

tems

In today’s systems, user privacy suffers while publishers, aggregators and OSN

providers mostly benefit from third-party tracking. In a web, where third-party tracking

is prevented via the use of client-side tools, publishers’ ability to learn statistics about

their users to provide them with better and more content, to monetize that content

via advertisements and to increase the exposure of their sites to more users will be

hampered. We think that users and publishers both are crucial parts of the current web,

and failure to satisfy one side’s needs will lead to an unsustainable web ecosystem.

In this thesis, we take the stance that just preventing third-party tracking of users

without considering the functionality it serves to web publishers and other entities is

not a viable solution. To this end, our research is concerned with the design, analysis

and implementation of practical systems with the goal of preserving the functionality of

today’s systems as much as possible, but do so without tracking users. More specifically,

we want to provide a method for enabling social interactions on websites in an on-

demand fashion and a system that provides extended web analytics in aggregate form

to publishers and data aggregators without violating individual user privacy. Overall,

5

this thesis makes the following contributions:

A General and Interaction-based Third-Party Cookie Policy: We present a new third-

party cookie policy for modern browsers and explore its implications. In this new

policy, third-party cookies are only sent to the third-party domain when (and if) the user

interacts with the third-party content.

We consider this interaction as the user’s intent to engage with the third-party

content, and thus, willingness to let the third-party know about the current page the user

is visiting (i.e., on the first-party domain). This approach prevents undesired third-party

tracking with cookies, but enables interactive features such as social widgets on-demand.

As a result, the user is given more control. While other approaches such as anti-tracking

browser add-ons and other tools are similar in this regard, our policy is general and

does not require a curated blacklist that can be difficult to maintain.

Furthermore, the blacklisting tools above often consider non-tracking services for

analytics and advertisement services harmful and block them. As a result, publishers

who opt to be more privacy-friendly in their practices get penalized: their ability to

obtain statistics about their users and to monetize their content through advertisements

is hurt. In comparison, our policy does not interfere with non-tracking services for

analytics and advertisements.

Non-tracking Web Analytics: We describe the design, analysis and implementation of

the first web analytics system that can provide publishers with better extended web

analytics (e.g., user demographics) while eliminating the need for third-party tracking

and providing users with privacy protections (e.g., anonymity, unlinkability). While

doing so, our system does not introduce a new organizational component into the

ecosystem, which makes it practical and easier to adopt.

The approach we are taking is to store user data on the user device under the user’s

6

control with the help of a client software (e.g., browser). This data is queried directly by

the publishers, who distribute queries to the browsers when the users visit the publisher

website. After the clients execute the queries, they encrypt the answers with the data

aggregator’s public key. The publishers then relay the encrypted answers to the data

aggregator, who decrypts them, compiles the final result and shares it with the publisher.

During this process, both entities add differentially-private noise.

Keeping the user data on the user device enables us to get a more complete picture

of user’s browsing activities as well as to have more accurate demographic informa-

tion. Combined with the direct measurement of this information and the addition of

differentially-private noise, this approach enables our system to provide more accu-

rate and more types of extended web analytics than today’s systems without violating

individual user privacy.

Privacy-preserving String Discovery for Non-tracking Analytics: While the above

system is effective at eliminating the need for third-party tracking for analytics purposes,

it achieves this goal with one caveat: the system depends on the existence of pre-defined

string values as potential answers for queries distributed by the publishers. As a result,

publishers would have to enumerate a list of such values depending on the queries they

would like to distribute.

This requirement may not be an issue for certain types of queries, in which the

potential answer values are of small types, such as gender, education level and age.

On the other hand, queries about websites visited, search phrases used or free-text

tags assigned to photos may become a problem. In these cases, the anticipation and

enumeration of potential answer values may be difficult or impossible, limiting the

applicability and effectiveness of the analytics system.

We describe the design, analysis and feasibility study of a privacy-preserving string

discovery system that enables analysts to discover previously unknown string values.

7

Our system is complementary to the above non-tracking analytics system as well as

other similar systems [97, 98, 117, 128].

Similar to the above systems, the user strings are stored on the user device with

a client software. During the discovery, the clients send their encrypted strings for

aggregation by an aggregator and two proxies. The encrypted strings are then counted

blindly, such that the string values are not revealed during the counting. Afterwards,

noise is added to the counts. String values whose noisy counts pass a discovery threshold

are then revealed.

The user devices running the client software may have limited power and bandwidth

resources (e.g., mobile devices). To support even such clients, we employ low-cost

primitives (e.g., XOR-encryption). Our novel blind comparison method enables our

system to count encrypted strings without decrypting them. Besides the reduced client

overhead, these low-cost primitives also reduce the computation overhead on the server

components, with the caveat of increased but still cheap bandwidth overhead. In other

words, our system trades off cheap server bandwidth for drastically reduced client and

server computation overhead.

1.4 Organization

The rest of this thesis is as follows. In Chapter 2, we propose, prototype and evaluate

a new, general and interaction-based cookie policy that prevents third-party tracking

without penalizing common web services such as social networking. In Chapter 3, we

present the design and analysis of a novel system that eliminates the need for third-

party tracking on the web and provides publisher websites as well as data aggregators

with better extended web analytics. In Chapter 4, we describe the design, analysis and

evaluation of a privacy-preserving string discovery system that complements ours (and

8

similar) non-tracking analytics systems by providing them with potential answer values

for their queries. We discuss related work in Chapter 5 and conclude in Chapter 6.

9

Chapter 2

A General and Interaction-based

Third-party Cookie Policy

In this chapter, we propose and explore a new and general third-party cookie policy

that considers user interaction. This policy gives users more control regarding tracking,

does not require a curated and maintenance-requiring blacklist, and does not hamper

functionality of essential web services. A preliminary version of this work without the

evaluation was published in the IEEE Workshop on Web 2.0 Security and Privacy (W2SP)

in 2015 [82].

This chapter is organized as follows. The next section motivates the need for a new

and general cookie policy that considers user interaction when dealing with third-party

content. Section 2.2 presents our main contributions in devising such a policy. We list

our goals and our assumptions in Sections 2.3 and 2.4, respectively. Section 2.5 explains

our design and how it achieves our goals. We describe our implementation in Section 2.6.

Section 2.7 presents the evaluation of our implementation’s functionality and efficiency

using several thousands of pages from top 10K most popular sites from Quantcast. We

10

discuss our policy’s implications in Section 2.8 and conclude in Section 2.9.

2.1 Introduction

Tracking on the web by third-party service providers such as data aggregators and online

social network (OSN) providers raises concerns about user privacy. Existing cookie

policies in modern browsers offer a partial solution to this problem. A user can select

a cookie policy, in which the browser will not allow any third-party cookies to be set.

While effective at preventing tracking for behavioral advertisements, this policy causes

issues when the third party is an OSN provider. For example, Mozilla Firefox’s “never

accept third party cookies” policy breaks the functionality of social widgets on publisher

sites and does not allow a user to interact with them, even when the user is logged in to

the OSN that provided the widgets. Google Chrome and Apple Safari behave the same

way.

Another privacy option in Firefox aims to solve exactly this problem, such that

cookies from third parties will be accepted if the user has visited the third party site as a

first party in the past.1 For example, if the user is logged in to Facebook, all Facebook

Like buttons on other publishers will function properly. This option, however, allows the

OSN provider to act as a tracker and learn about the user’s visit to the publisher, even if

the user did not interact with the social widget [100, 144]. Tools, such as Priv3 [43, 100]

and ShareMeNot [53, 144], aim to prevent this tracking by OSN providers.

Following these tools, other popular client-side privacy tools like Ghostery [23] and

Disconnect [14] started preventing social widgets from being loaded, in addition to the

trackers by data aggregators. Using a blacklist of aggregators, behavioral advertisers

and OSN providers, these tools scan the loading page and prevent blacklisted elements

1Similar to Safari’s “block cookies from third parties and advertisers”.

11

from being loaded.

This blacklist-based approach has several limitations. First of all, the blacklist needs

to be maintained and then distributed to clients in a timely fashion; otherwise, the

benefits of using such a tool are greatly reduced. These tools try to find an optimum

update schedule for their tracker libraries. For example, Ghostery regularly (e.g., every

few weeks) updates its library of trackers while Disconnect checks for updates every

day. Other less popular tools like Priv3 and ShareMeNot support only a handful of

third parties, and depend on their developers to keep up with new social widgets. This

maintenance of the blacklist can be cumbersome and error-prone: there is no guarantee

that all third-party trackers will always be included in the blacklist.

In addition, these blacklists are very broad: They include first-party analytics tools,

such as Piwik, Open Web Analytics and Mint Analytics [36,40,41], preventing publishers

from learning about their visitors’ behavior on their own sites. These blacklists can

and do also include non-behavioral advertising that, by definition, does not require

the tracking of users across the web (e.g., Project Wonderful). As a result, publishers

who choose more privacy-friendly solutions for analytics and advertisements by not

using third-party tracking are being unnecessarily penalized. While such non-tracking

services can be removed from the blacklist, the maintenance issue is only amplified: the

tool provider now has to categorize and determine which solutions are acceptable.

Finally, such a blacklist may be bypassed by third parties, simply with a configuration

trick at their servers. For example, Apache2 directive ‘AliasMatch’ [39] enables a third

party to serve the blacklisted element (i.e., JavaScript file, social widget) via customizable

URLs, such that each publisher uses a different source, yet the third party serves the

same file. This trick would force the tools to blacklist entire domains, which can become

problematic if legitimate files not related to tracking are also served (e.g., libraries,

images, OSN site).

12

2.2 Contributions

In this chapter, we propose and explore a new third-party cookie policy. The main idea

is to send the associated cookies of third-party domains in a page only after the user has

interacted with the third-party content.

Imagine the user is visiting a page on siteA (the first-party domain), which embeds

a resource from siteT (the third-party domain). siteT then sets a cookie value to the

user’s browser to indicate that the user visited siteA. Later, when the user visits another

page on siteB that also embeds a resource from siteT , siteT would normally receive the

cookies it set before, and thus, learn that this user has visited both sites, siteA and siteB.

With our policy, the browser would not send any cookies associated with siteT while

loading the third-party resource on siteB. While this idea is simple, it is effective to

prevent third-party tracking with cookies: if siteT does not receive its cookies during the

second load of the resource, it will not know that this user has been to siteA.

Simply preventing third-party tracking, however, is not a viable option. In today’s

web, the resource in the above example might be a social widget that allows the user to

share web content with her friends. Our goal is to design a general solution that will not

only prevent third-party tracking, but do so without penalizing essential web services

such as social networking, advertisements and analytics.

To support such cases, we augment our policy such that these third-party resources

are reloaded after user interaction, but this time while sending the associated third-party

cookies. As a result, the functionality of social widgets is preserved both for publishers

and users, and enabled on-demand for users.

While the reload-upon-interaction idea is not new and have been used in multiple

client-side tools, all these tools require a blacklist. In comparison, our policy is general

13

and is applied to any third-party content. This generalization coupled with user-specified

whitelists gives users more flexibility as well as more control regarding the amount of

tracking they would want and when it can occur.

2.3 Goals

We advocate that the users should be the final decision makers with regards to tracking

by third parties, be they data aggregators or OSNs. Specifically, we would like our

policy to enable interactive features (i.e., social widgets) in an on-demand fashion. Like

previous approaches [43, 100, 144], we think that user interaction is necessary to achieve

balance for privacy and functionality for a social web.

At the same time, we would like to devise a general cookie policy to prevent third-

party tracking by not only OSNs but also data aggregators and advertisers. This policy

should not depend on a blacklist unlike the above tools; thus, it should not require the

cooperation of a developer to maintain and distribute such a blacklist to protect user

privacy.

Finally, our policy should not interfere with non-tracking services for analytics and

advertisements, and penalize publishers using such arguably more privacy-friendly

services. We recognize the fact that for a sustainable web, publishers need statistical

data about their users to improve their services as well as advertisements to financially

support their operations.

2.4 Assumptions

When a user visits a web page, we consider the domain serving the page as the first party.

All other domains are considered third-party domains. Although it is possible that some

14

third-party domains belong to the same entity that owns the first party domain, we do

not consider these cases. A method to dynamically determine if two domains belong to

the same entity is orthogonal to our policy and is outside our scope.

We consider any content that is not loaded from the first party domain as third

party content. Such content can include social widgets from OSN providers as well as

advertisements.

We assume that the cookie preferences reflect the users’ intentions and that the third

parties are not going to try to bypass them. In a recent example, Doubleclick was caught

deliberately circumventing Safari’s default policy, and got sued by the Federal Trade

Commission [25]. We assume such attempts are frowned upon, if not illegal, and the

attempting party risks its reputation. We think that the data aggregators providing

voluntary opt-out mechanisms already show their good faith in this regard, and that

this assumption is reasonable.

More specifically, we leave methods to circumvent user cookie preferences outside

our scope. One such method is fingerprinting, in which a third party creates a unique

signature of a user’s browser by combining various pieces of information in the browser

environment, such as plugins, fonts and resolution. This fingerprint is then used to track

the user across websites [106,131] without storing any cookies on the user’s device. With

the prevalence of such practices increasing [76, 77, 137], potential defenses are already

being researched [111, 136].

Another method outside our scope is ‘cookie synching’ [12, 56]. In cookie synching,

publishers share first-party cookie values of their users with third parties, by embedding

a resource request to the third party with the first-party cookie values as parameters,

enabling the third parties to set their own cookies. As a result, they can establish a

mapping between the received cookie values and the cookie values they set, such that

the user’s browsing behavior can be correlated.

15

Finally, we assume that mashups, sites with data and code from multiple publishers,

are interactive. If not, we assume that they will continue to function without the third

parties receiving user-specific data (i.e., cookies). For example, most mashups using the

Google Maps API still function if the user is not logged in to Google. If the mashup is

interactive, our policy will reload the third-party content with associated cookies. As a

result, the mashup should continue to function as expected.

2.5 Design

To achieve our goals, we propose the following policy: Any content from a third party

domain (e.g., social widgets, advertisements) should be loaded without sending the

associated (third-party) cookies. This content will be reloaded with the associated

cookies, when (and if) the user interacts with it.

2.5.1 Detecting Third-party Requests & Removing Cookies

When a page is being loaded, the policy will check the HTTP GET requests for the

resources embedded in the page. These resources can include images, scripts, embedded

videos and iframes as well as resources embedded in iframes. Requests to the first-party

domain are let through unchanged with their cookies. Requests for a resource from

a third-party domain are only let through after removing the cookie values. These

cookies are still present in the browser (i.e., they are not deleted), and used when the

user interacts with the third-party content.

16

2.5.2 Click as User Interaction and Reload-on-click

We define user interaction as the mouse click to a page element. A click covers a

big portion of user interactions with content, such as following a link, clicking an

advertisement or bringing an element into focus. Previous tools also use a click as an

indication of user intent to interact with social widgets [23, 43, 53].

Although other events such as key presses or hovering over an element can also

constitute user interaction, such events can be more complex than a user click. For

example, in the presence of multiple page elements that register key press event listeners,

it is not exactly clear how to determine the interacted element without requiring extra

effort by the user (e.g., a click). Similarly, hovering might not be easily distinguished

from movement among page elements or the user being idle. On the other hand, a user

click clearly defines the interacted element. We leave covering these other cases to future

work.

Previous work, Priv3 [43, 100], showed that reloading social widgets after the user

click is effective for enabling social features on a website without compromising user

privacy for functionality. For example, when the user wants to click the Facebook Like

button on a page, it is reloaded by sending the user’s Facebook cookies. In our design,

we inherit this selective reload functionality. However, our work enhances this approach

with two new mechanisms, which are described next.

2.5.3 Two-click Control for Social Widgets

After the third-party content is initially loaded without sending the user’s cookies, we

use a two-click control. The first click enables the third-party content by reloading it with

the user’s cookies. The second click registers the original action. For example, when the

Facebook Like button is reloaded after the (first) user click, it shows information about

17

the friends of the user who also liked that page. If the user wants to like the page, the

second click will register the action. In this case, Facebook knows about the user’s visit

to that page only after the first click (i.e., activation of the widget) if the user chooses to

click the widget. If not, it would not recognize this user as a logged-in user.

Enabling widgets in this manner still provides functionality, but at the same time,

allows OSN users not interested in using the social widgets to have more control over

when OSNs can learn about their browsing. Recently, the Belgian privacy commission

took Facebook to court for the tracking of non-users as well as logged-out users by

placing cookies not necessarily related to the login status of the user to Facebook [9, 17].

With our two-click control, such tracking by Facebook would not be possible.

It may be possible to combine the two clicks into one action, such that the activation

of the widget by reloading it with cookies (i.e., first click) and the widget action (i.e.,

second click) can be triggered with a single user click.2 However, we decided to use the

two-click scheme, because it gives the user additional control regarding the functionality

of the social widget: it is possible for the user to be interested only in the personalized

content the OSN provides, without the user activating the social sharing feature. For

example, the user may want to enable the ‘Like’ button to see which friends of her have

liked a page (i.e., first click), but the user may not want to like the page (i.e., second

click). With a single-click scheme, this scenario would not be possible.

The statistics about the number of loads of a widget compiled by the OSN provider

may be inflated because of the reload. Strictly speaking, these statistics would be com-

piled using third-party tracking by the OSN provider: the statistics would not contain

just the number of loads of a widget, but also the user as well as the page embedding the

widget. Our policy is aimed to prevent this kind of behavior. Nevertheless, it is possible

to augment our policy’s reload functionality with extra information to indicate that the

2In fact, previous work, Priv3 [43, 100], uses this method.

18

new request is a reload (and not a new load) of the widget, such that OSN providers can

correct their statistics about the number of loads. This augmentation does not give more

information to the OSN provider about the user, because the reload already happens

with user cookies after the user’s interaction with the third-party widget.

2.5.4 Generalization

In contrast to previous approaches [14, 23, 43, 53], our policy does not require a blacklist:

it is applied to any third party content. Detecting such content is a straightforward task

similar to the same origin policy already employed by browsers.

Besides social widgets, our policy is also effective in preventing other third party

tracking via cookies: the user cannot interact with ‘invisible’ elements (e.g., pixel tags,

invisible iframes) that are used for behavioral advertising and data aggregation purposes.

As a result, cookies associated with these third parties will never be sent, preventing

them from tracking the user across the web. These elements do not need to be detected

at runtime or enumerated in advance as in a blacklist, because the policy applies to any

third-party content.

Finally, our policy does not interfere with first-party analytics tools, because these

tools use cookies that belong to the first-party domain whose requests are not modi-

fied. Similarly, this policy does not interfere with non-tracking (i.e., non-behavioral)

advertisement systems, which by definition do not use any tracking cookies to load

advertisements.

2.5.5 Social Widgets versus Advertisements

Third-party content such as social widgets and advertisements are loaded in a container,

usually an iframe. The JavaScript in an iframe is prevented by the browser from accessing

19

and manipulating the embedding page’s document object model (DOM) tree. This

model enables publishers to include content from third-party providers without having

to worry about whether they are going to affect the embedding page’s content.

The lack of a blacklist forced us to develop a heuristic to distinguish between adver-

tisements and social widgets. A click for an advertisement needs to be passed unchanged,

whereas a click for a social widget requires a reload. For this purpose, we make the

following observation and validate it later in Section 2.7.

Social widgets are usually loaded in a single, non-nested iframe. For example,

Facebook’s Like button, Twitter’s Tweet button and Google+’s +1 button as well as

commenting platforms such as Disqus are usually loaded in a single iframe. The user

click on this iframe simply triggers the reload of the iframe. Note that this approach is

different from other client-side tools, such as Ghostery, which require the user to reload

the entire page rather than a single element after the user interaction.

On the other hand, third-party advertisements are usually present in nested iframes:

the advertisement is usually present in an iframe that is contained within another iframe.

In these cases, the user click is just passed through without any changes and without

reloading any of the iframes.

In our design, we use the following heuristic. We first check the target node of the

user click and obtain the hyperlink. If there is no such node or no hyperlink is present,

we consider the source of the iframe as the target. If the link belongs to a third party

domain who had no cookies filtered with our policy, we let the click through. If the link

belongs to a third party domain whose cookies our policy filtered, we check whether the

target node is present in a single or nested iframe. If the target is in a single iframe, the

iframe is reloaded with the corresponding cookies. If it is in a nested iframe, the click

is passed through. As a result, clicks to social widgets should trigger a reload whereas

clicks to advertisements should pass unchanged.

20

2.5.6 Third-party Cookie Access

Strictly speaking, our policy does not prevent third parties from setting cookies on the

user’s browser. One caveat of this approach is that they can receive these cookies later,

if the user visits the third party site as a first party. This issue opens the possibility of

the third party accumulating the browsing history of the user by setting its cookies and

hoping the user visits its website. Although the probability of a user visiting a tracker’s

website may be low, this issue becomes more important if the third party is an OSN.

Previous work, Priv3 [43, 100], prevents third-party scripts from accessing cookie

values until the user interaction. As a result, third parties cannot use JavaScript to

compile a list of visited pages in the cookie values to receive them later. In our design,

we also use this approach. This problem might also be solved by refusing new third-party

cookies, but we leave it to future work.

2.5.7 Limitations

Our biggest limitation is that our heuristic may fail to distinguish a social widget

and an advertisement loaded in a single (i.e., non-nested) iframe. A user click on the

advertisement may trigger a reload, if the target node is a third party whose cookies

our policy has filtered. This reload may have an adverse effect such as creating an extra

impression that otherwise would not have occurred. More importantly, the click on the

advertisement may not register creating an undesired behavior. We further investigate

how prevalent this issue is in Section 2.7.

21

2.6 Implementation

We implemented a proof-of-concept of our proposed policy as browser extensions. Our

implementation, Priv3+, available for Firefox [44] and Chrome [45]. To date, it has been

downloaded about 28K times and has about 4K daily users.

Priv3+ inherits the selective reload functionality and the third-party cookie access

mechanism from previous work, Priv3 [43,100], but implements the following additional

features. First, Priv3+ generalizes the idea of removing third-party party cookies from

all third-party resource requests and stores the corresponding page elements to reload

them after user interaction. Second, it implements the two-click control, such that the

first click on a widget first enables it and reloads third-party content with user cookies,

and the second click registers the original action if the user chooses to do so.

Furthermore, Priv3+ shows information about the third-party domains and how

many resources were loaded from each third party domain. It implements the whitelist-

ing functionality and presents a basic graphical user interface to enable the user to add

exceptions to the policy, such that certain third-party domains will be allowed to receive

their cookie values on certain publisher websites without user interaction (Figure 2.1).

Priv3+ can highlight different types of third-party content. For example, Figure

2.2 shows dashed lines around the Tweet button, the comments by Disqus and the

advertisements: Green indicates exceptions (i.e., the Tweet button). Red indicates third

party resources in a single iframe (i.e., the Disqus comments). Orange indicates third

party resources in nested iframes (i.e., the advertisement in the upper left). Yellow

indicates a potential third party element whose source attribute was not present (i.e., the

advertisement in the bottom left). Finally, Priv3+ shows a tooltip information about the

request to load the third party content: whether the third party’s cookies were removed

during the request, or the third party did not have any cookies during the request.

22

Figure 2.1: Priv3+ options in Mozilla Firefox. Priv3+ shows information about the third
party domains present on this page. The user can choose to add exceptions to the policy
as well as highlight different types of third party content.

Figure 2.2: Priv3+ options in Google Chrome. Priv3+ shows information about the third
party domains present on this page. The user can choose to add exceptions to the policy
as well as highlight different types of third party content. twitter.com is excepted by the
user (i.e., green), the Disqus comments are present in a single iframe (i.e., red) and the
advertisement in the upper left corner is present in nested iframes (i.e., orange). The
advertisement in the bottom left is highlighted as a potential third party element (i.e.,
yellow) because the iframe did not have any source attribute.

23

2.7 Evaluation

In this section, we evaluate the effectiveness of our policy using large-scale web crawls.

We first evaluate the effectiveness of our heuristic to distinguish social widgets and

advertisements. We then report on the performance overhead of our policy.

2.7.1 Methodology

We created a new user profile in Firefox with the default cookie policy settings (i.e.,

“accept all cookies”) and installed a simple Firefox add-on we created. This add-on

automatically records the URL of the page and the page load time as well as the rendered

page’s DOM tree at the point when the JavaScript window.onLoad event is fired. Before

we record the DOM tree, we wait an additional 3 seconds to allow some time for further

resources to load, for instance, via asynchronous XMLHttpRequests.

For our crawls, we used popular websites from Quantcast [51]. We visited the sites

and recorded the pages with our add-on. We allowed each site about 45 seconds to finish

loading before moving to the next one. We then randomly extracted up to 10 links from

each successfully loaded site. Table 2.1 summarizes our crawls and resulting datasets.

To simulate a user logged in to an OSN, we created user accounts on the following

social network services: Google+, Facebook, Twitter, Disqus and Pinterest. Before we

conducted a crawl, we manually logged in to these services and ensured that the cookie

values persist (i.e., ‘Remember me’ option is selected).

2.7.2 Efficacy of the Heuristic

Our heuristic distinguishes social widgets from advertisements by checking whether

the interacted element is in a single iframe. If so, the iframe is reloaded with appropri-

24

Table 2.1: Crawls & datasets for our evaluation.

Crawl name Crawl 1 (prelim.) Crawl 2 Crawl 3
Quantcast snapshot Nov 2014 Mar 2015 Mar 2015
Dates Mar 7-9, 2015 May 15-Jun 15 2015 Jun 16-28, 2015
sites 1K 10K 10K
successfully loaded sites 959 8916 8731
links extracted 8986 85049 72855

ate cookies. Unfortunately, this approach can become problematic if advertisements

are also loaded in single iframes (rather than nested iframes), because a reload of an

advertisement can cause an additional impression and double-billing for the advertiser.

Similarly, if a social widget is loaded in nested iframes, our heuristic would fail to

recognize it and would not reload it. Fortunately, the effect would not be as bad as

reloading advertisements, because the click will be just passed to the social widget,

which may ask the user to login again. Nevertheless, if this case happens frequently, it

can frustrate the user.

Here, we evaluate how prevalent these potentially problematic cases are today. For

this purpose, we modified a popular Firefox add-on for developers, Firebug [19], and

augmented it to record the encountered iframes on a page, including single and nested

ones, along with their parent elements. For each element, we recorded their element

attributes. For single iframes, we also recorded whether the iframe contained any

hyperlinks that the user can click on. We then randomly selected 20K pages from our

most recent crawl (i.e., Crawl 3). After manually logging into the OSN services, we

visited the pages with the default policy of “accept all cookies”. A total of 19462 pages

were loaded successfully, so that we could record their iframes.

During our evaluation, we consider two additional properties of the iframes loaded

on a page: visibility and reloadabilty.

25

Visibility. We first check whether the iframe is visible. If the iframe is not visible to the

user, then the user cannot interact with such an iframe. As a result, our heuristic would

never have to handle these cases.

We use three checks to determine the visibility of an iframe. First, we check the

iframe’s CSS style as well as the width and height attributes. For the CSS style, we look

for ‘display: none;’ and ‘visibility: hidden’ property values. For the width and height

values, we investigate the CSS style as well as the element attributes. If the width and

height values are both set to be 0 or 1 pixels, or 0% of the respective dimension of the

window, we consider the element to be invisible to the user.

Second, we check the position of the iframe. Specifically, we look for CSS attributes

that indicate that the position of the iframe should be out of the current window bound-

aries. For this purpose, we conservatively look for ‘position: absolute’ property along

with a negative pixel value for ‘top’, ‘bottom’, ‘left’ and ‘right’ positioning parameters

(e.g., “position: absolute; top: -1000px”). Additionally, we use the stacking order of the

elements via the ‘z-index’ property and consider a negative value as an indication that

the iframe should be behind other elements, and thus, invisible.

Finally, we check the visibility of the iframe’s parents in the DOM tree because an

invisible parent will also cause the iframe to be invisible. We again check the same CSS

properties and element attributes for each parent and mark the iframe invisible if any

of the parents is invisible. For parent elements, we conservatively consider only the

dimensions and display properties of the element (and not its position values).

Reloadability. After determining the iframe’s visibility, we consider whether it can

be reloaded by our heuristic if the user were to interact with it. If the iframe is not

reloadable, then there is no point of considering this iframe within the context of our

heuristic.

26

Table 2.2: Number of iframes recorded in successfully loaded 19462 pages in our random
sample.

Type Single Nested
Invisible 57204 64613
Visible, Unreloadable 2121 6452
Visible, Reloadable, First-party 4073 12529
Visible, Reloadable, Third-party 19947 16647
Total 83345 100241

For this purpose, we check the source attribute (i.e., ‘src’) of the iframe. It is possible

that the iframe does not have one, perhaps because it was generated via JavaScript. It is

also possible that the source attribute contains some JavaScript code that executes when

the iframe is first loaded by the browser. These cases are not considered by our heuristic

and thus, are filtered from our results.

2.7.2.1 Advertisements in Single Iframes

We first investigate the single iframes that are directly included in the pages. In other

words, these single iframes do not contain other iframes and are not contained within

other iframes. Table 2.2 shows the breakdown of the iframes we recorded in our crawl.

There were a total of 83345 single iframes. A big majority of these single iframes were

invisible to the user. About 24% of them were visible, reloadable and belonging to a

third-party domain. We consider these iframes for the evaluation of our heuristic.

We extract the source attributes of the iframes and match them to well-known social

widgets. Any other third-party domain is conservatively considered an advertisement

domain. These cases would constitute a false positive for our heuristic, because our

heuristic would classify this iframe as a social widget and reload it instead of passing

the click unchanged.

Table 2.3 shows the top 30 third-party domains ranked by the number of iframes. As

27

Table 2.3: Distribution by domain and category of single, third-party iframes that were
visible and reloadable. Only top 30 domains with the most number of iframes are
shown. The remaining sites (shown as ‘Other domains’) are conservatively assumed to
be advertisement iframes.

Domain Count (Percentage) Category Has cookies?
facebook.com 6921 (34.70%) Social Yes
twitter.com 3129 (15.69%) Social Yes
google.com 2752 (13.80%) Social Yes
doubleclick.net 1876 (9.41%) Advertisement Yes
youtube.com 1250 (6.27%) Video/Social Yes
disqus.com 505 (2.53%) Social Yes
exoclick.com 483 (2.42%) Advertisement Yes
stumbleupon.com 185 (0.93%) Social Yes
blogger.com 135 (0.67%) Social Yes
amazon-adsystem.com 122 (0.61%) Advertisement Yes
googleapis.com 114 (0.68%) Advertisement No
addthis.com 107 (0.54%) Social Yes
reddit.com 50 (0.25%) Social Yes
adnxs.com 49 (0.25%) Advertisement Yes
sitescoutadserver.com 38 (0.19%) Advertisement Yes
lockerdome.com 38 (0.19%) Social Yes
juicyads.com 37 (0.19%) Advertisement Yes
2mdn.net 37 (0.19%) Advertisement No
yimg.com 37 (0.19%) Advertisement Yes
shopifyapps.com 37 (0.19%) Advertisement Yes
eblastengine.com 34 (0.17%) Advertisement No
springboardplatform.com 32 (0.16%) Advertisement Yes
adblade.com 30 (0.15%) Advertisement Yes
wistia.net 26 (0.13%) Video Yes
zedo.com 24 (0.12%) Advertisement Yes
redditstatic.com 24 (0.12%) Social Yes
tumblr.com 23 (0.12%) Social Yes
tout.com 23 (0.12%) Video Yes
youtube-nocookie.com 21 (0.11%) Video/Social No
myvoicenation.com 21 (0.11%) Social Yes
Other domains (465) 1894 (9.50%) Advertisement* Yes (299), 157 (No)
All domains 19947 (100%) - -

28

one can see, the majority of the single iframes belongs to social widgets by Facebook,

Twitter and Google+. These widgets constitute about 65.83% of the single iframes. A

further 12.07% belong to video sites that allow embedding of videos (e.g., Youtube),

commenting platforms (e.g., Disqus), blog sites with social interactions (e.g., Blogger,

Stumbleupon) and smaller social networks (e.g., Addthis, LockerDome).

The biggest false positive with 9.41% is the doubleclick.net iframes. Upon further

inspection, we find out that 1646 (87.74%) of these 1876 iframes are called ‘view-through

conversion’ iframes. When we manually visited some of the pages that included these

iframes, we noticed that all of these iframes are transparent, such that they take the

embedding page’s background color. Furthermore, these iframes did not contain any

links nor any content, and were located at the bottom of the viewed page. Even though

our heuristic would reload these iframes if clicked by the user, the likelihood of the

user click seems quite low. A further 122 (6.50%) did not contain any links. Most

advertisements contain either an image or some descriptive text about the advertisement,

which links to the landing page of the advertiser. As a result, the likelihood that these

iframes were used to show an advertisement seems low, which in turn reduces the

likelihood of the user interacting with this iframe. Out of the remaining 108 iframes, 40

of these iframes by doubleclick.net were present only in parked domains, which showed

only advertisements.

The second biggest false positive with 2.42% is iframes by exoclick.com. When

inspected, we found that these iframes only existed in adult sites. There were 59 such

domains and 145 pages on these domains. We also checked the other iframe domains

that were present in these same pages. Out of 590 single (visible and reloadable) iframes

found, there were a total of 47 social widgets belonging to Google+ (20), Twitter (15) and

Facebook (12). The rest of the iframes belonged to other adult sites.3

3There were no social widgets present in the (visible and reloadable) 427 nested iframes.

29

For the remaining single iframes (shown as ‘Other’ domains in Table 2.3), we assume

conservatively that they all belong to the advertisement category. The total number for

advertisement iframes, including the 108 doubleclick.net and 483 exoclick.com iframes,

is 3076. This number corresponds to a false positive rate of 15.42%, in which our heuristic

would recognize an advertisement as a social widget and reload it.

During our inspection, we notice that some of these third parties do not set any

cookies. To understand how frequent this case is, we check the cookie database of the

Firefox profile. We find that 307 single iframes were from domains that did not contain

any links and did not have any cookies. Such domains can be content distribution

network sites or cloud operators, which are only used to serve advertisement files such

as banners, images and JavaScript libraries. Examples include ‘googleapis.com’, and

‘2mdn.net’. In these cases, our heuristic would not reload the iframe: The click would

not find a target link, and thus, use the iframe’s source. Because the iframe domain

did not have any cookies, the click would be passed without reloading the iframe.

Compensating for these cases, our heuristic’s false positive rate drops to 13.88%.

In iframes that contained links, it is also possible that the target link belongs to a

domain that did not set any cookies. In these cases, the iframe will not be reloaded either.

We find that the number of links belonging to domains with cookies and without cookies

are almost equal, constituting 41.03% and 41.28% of the links, respectively.4 As a result,

it is still possible that our heuristic would pass the click without reloading the iframe.

2.7.2.2 Social Widgets in Multiple Iframes

Next, we check the nested iframes. A nested iframe is an iframe that either contains a

child iframe or that is contained by another iframe. Table 2.2 shows the total numbers of

nested iframes. Again, a big majority of these iframes are invisible to the user. There

4The rest were either first party links or non-href (e.g., ’javascript:’ links).

30

were 16647 nested iframes that can be considered for our heuristic’s evaluation.

For our evaluation, we investigate the source attributes of these iframes. If any of

these sources belong to a social widget, we consider that as a failure of our heuristic.

Table 2.4 shows the top 30 third-party domains ranked by the number of iframes. As

one can see, the significant majority of these third parties belong to the advertisement

category. For these iframes, our heuristic would correctly pass the click without reloading

the iframes.

Table 2.5 shows the number of nested iframes containing a social widget. There were

a total of 679 iframes constituting about 4.07% of the total. These cases are false negatives

for our heuristic, because it would fail to recognize these widgets. When the click is

passed through, the widget might ask the user to log in again instead of being reloaded

with cookies.

2.7.2.3 Distribution of Social Widgets

We then investigate the distribution of social widgets. Table 2.6 shows the numbers

(and percentages) of social widgets present in single or nested iframes. Again, the

majority of social widgets were present in single iframes (i.e., 93.79%), including widgets

belonging to bigger online social network domains, such as facebook.com, twitter.com

and google.com.

2.7.2.4 Distribution of Advertisements

We also investigate the distribution of advertisement iframes. We conservatively consider

every domain that is not present in Table 2.6 as an advertisement domain. We again

remove the false positives associated with doubleclick.net (i.e., 1646 ‘view-through

conversion’ iframes and 122 iframes with no links) that have been explained in Section

31

Table 2.4: Distribution by domain and category of nested, third-party iframes that were
visible and reloadable. Only top 30 domains with the most number of iframes are shown.

Domain Count (Percentage) Category Has cookies?
doubleclick.net 7162 (43.02%) Advertisement Yes
googlesyndication.com 2141 (12.86%) Advertisement Yes
adnxs.com 1023 (6.15%) Advertisement Yes
criteo.com 672 (4.04%) Advertisement Yes
2mdn.net 389 (2.34%) Advertisement No
exoclick.com 302 (1.81%) Advertisement Yes
brandwire.tv 274 (1.65%) Advertisement Yes
yummly.com 177 (1.06%) Social Yes
vimeocdn.com 172 (1.03%) Video No
mediaplex.com 151 (0.91%) Advertisement Yes
vimeo.com 147 (0.88%) Video Yes
google.com 144 (0.87%) Social Yes
amazon-adsystem.com 136 (0.82%) Advertisement Yes
teleskipp.de 134 (0.80%) Video No
veruta.com 124 (0.75%) Advertisement Yes
optmd.com 99 (0.59%) Advertisement Yes
adspirit.de 91 (0.55%) Advertisement Yes
rfihub.com 80 (0.48%) Unknown Yes
facebook.com 79 (0.47%) Social Yes
ad4mat.de 72 (0.43%) Advertisement No
truste.com 66 (0.40%) Advertisement Yes
w55c.net 65 (0.40%) Advertisement Yes
ero-advertising.com 62 (0.37%) Advertisement Yes
youtube.com 62 (0.37%) Video/Social Yes
instagram.com 56 (0.34%) Social Yes
solocpm.com 55 (0.33%) Advertisement Yes
tacdn.com 51 (0.31%) Unknown Yes
pubmatic.com 51 (0.31%) Advertisement/Analytics Yes
ibm.com 48 (0.29%) Unknown Yes
ato.mx 48 (0.29%) Advertisement Yes
Other domains 2514 (15.10%) Mixed Yes (295), No (128)
All domains 16647 (100%) - -

32

Table 2.5: Number of nested iframes belonging to an online social network widget (i.e.,
false negatives).

Domain Count (Percentage)
yummly.com 177 (1.06%)
google.com 144 (0.87%)
facebook.com 79 (0.47%)
youtube.com 62 (0.37%)
instagram.com 56 (0.34%)
lockerdome.com 47 (0.28%)
blogger.com 46 (0.28%)
linkedin.com 29 (0.17%)
disqus.com 19 (0.11%)
twitter.com 13 (0.08%)
massrel.io 7 (0.04%)
Total 679 (4.07%)

2.7.2.1. Table 2.7 shows the number (and percentages) of these advertisements present in

single or nested iframes. As one can see, the majority of advertisements (90.49%) were

served in nested iframes.

2.7.2.5 Summary

We can summarize our results as follows. The majority of advertisements are placed in

nested iframes. Similarly, the majority of social widgets are present in single iframes.

We find that the practice of placing advertisements in single iframes and social widgets

in nested iframes is not prevalent in the Internet today. We conclude that our heuristic

would work as desired. Section 2.8.1 discusses the robustness of our heuristic to changes.

2.7.3 Performance Overhead

To have a better understanding of our policy’s performance, we recorded the page load

times of existing cookie policies as well as our policy. To do so, we created three more

Firefox profiles, in addition to the default policy of “accept all cookies” we used to

33

Table 2.6: Distribution of iframes from social widget domains.
Total # iframes # single iframes # nested iframes

Domain from domain (Percentage) (Percentage)
facebook.com 7000 6921 (98.87%) 79 (1.13%)
twitter.com 3142 3129 (99.59%) 13 (0.41%)
google.com 2896 2752 (95.03%) 144 (4.97%)
youtube.com 1312 1250 (95.27%) 62 (4.73%)
disqus.com 524 505 (96.37%) 19 (3.63%)
stumbleupon.com 185 185 (100.0%) 0 (0.0%)
blogger.com 181 135 (74.59%) 46 (25.41%)
yummly.com 177 0 (0.0%) 177 (100.0%)
vimeocdn.com 174 2 (1.15%) 172 (98.85%)
vimeo.com 148 1 (0.68%) 147 (99.32%)
addthis.com 108 107 (99.07%) 1 (0.93%)
lockerdome.com 85 38 (44.71%) 47 (55.30%)
instagram.com 56 0 (0.0%) 56 (100.0%)
reddit.com 50 50 (100.0%) 0 (0.0%)
wistia.net 33 26 (78.79%) 7 (21.21%)
linkedin.com 29 0 (0.0%) 29 (100.0%)
redditstatic.com 24 24 (100.0%) 0 (0.0%)
tout.com 23 23 (100.0%) 0 (0.0%)
tumblr.com 23 23 (100.0%) 0 (0.0%)
youtube-nocookie.com 21 21 (100.0%) 0 (0.0%)
massrel.io 7 0 (0.0%) 7 (100.0%)
All domains 16198 15192 (93.79%) 1006 (6.21%)

34

Table 2.7: Distribution of iframes from advertisement domains. These domains are the
remaining domains after the social widget domains (shown in Table 2.6) are removed
from the list of all domains with nested iframes. Only top 30 domains with the most
number of iframes are shown.

Total # iframes # single iframes # nested iframe
Domain from domain (Percentage) (Percentage)
doubleclick.net 7270 108 (1.49%) 7162 (98.51%)
googlesyndication.com 2147 6 (0.28%) 2141 (99.72%)
adnxs.com 1072 49 (4.57%) 1023 (95.43%)
exoclick.com 785 483 (61.53%) 302 (38.47%)
criteo.com 673 1 (0.15%) 672 (99.85%)
2mdn.net 426 37 (8.69%) 389 (91.31%)
brandwire.tv 274 0 (0.0%) 274 (100.0%)
amazon-adsystem.com 258 122 (47.29%) 136 (52.71%)
mediaplex.com 164 13 (7.93%) 151 (92.07%)
teleskipp.de 134 0 (0.0%) 134 (100.0%)
googleapis.com 128 114 (89.06%) 14 (10.94%)
veruta.com 124 0 (0.0%) 124 (100.0%)
optmd.com 105 6 (5.71%) 99 (94.29%)
adspirit.de 91 0 (0.0%) 91 (100.0%)
rfihub.com 85 5 (5.88%) 80 (94.12%)
ad4mat.de 72 0 (0.0%) 72 (100.0%)
ero-advertising.com 72 10 (13.89%) 62 (86.11%)
truste.com 66 0 (0.0%) 66 (100.0%)
w55c.net 65 0 (0.0%) 65 (100.0%)
everesttech.net 57 16 (28.07%) 41 (71.93%)
solocpm.com 55 0 (0.0%) 55 (100.0%)
tacdn.com 51 0 (0.0%) 51 (100.0%)
pubmatic.com 51 0 (0.0%) 51 (100.0%)
cloudfront.net 49 17 (34.69%) 32 (65.31%)
ibm.com 48 0 (0.0%) 48 (100.0%)
ato.mx 48 0 (0.0%) 48 (100.0%)
adxpansion.com 47 0 (0.0%) 47 (100.0%)
yimg.com 46 37 (80.43%) 9 (19.57%)
adblade.com 45 30 (66.67%) 15 (33.33%)
springboardplatform.com 42 32 (76.19%) 10 (23.81%)
Other domains 2699 554 (20.53%) 2145 (79.47%)
All domains 17249 1640 (9.51%) 15609 (90.49%)

35

Table 2.8: Number of successfully loaded links.
Crawl 1 Crawl 2 Crawl 3

Accept all cookies 8654 81466 69798
Accept third party
cookies from visited 8519 81798 69912
Never accept
third party cookies 7975 81888 69913
Our policy (Priv3+) 8538 81859 69953
Loaded by all 7257 73835 63567

collect the links. Two of these profiles correspond to each of the remaining cookie policy

settings, namely “accept third party cookies from visited” and “never accept third party

cookies”. Similar to the “accept all cookies” profile, we installed PageRecorder add-on

for these profiles. For the last Firefox profile, we modified our Priv3+ add-on to augment

it with the same functionality to record the URL of the page and the page load times.

We again waited 45 seconds for a page to successfully load. Nevertheless, some pages

were not successfully loaded within the allowed time. Furthermore, due to fluctuations

in network and server conditions, not all pages were loaded successfully with all of

our Firefox profiles. For example, it is possible that the profile with “accept all cookies”

policy was able to load a page successfully, but the profile “accept all cookies from

visited” was not. Nevertheless, there was a substantial number of links that were loaded

successfully by all four profiles. Table 2.8 shows the number of successfully loaded links.

Table 2.9 shows the average page load times as well as the relative overhead. We

consider the profile with the “accept all cookies” policy as the baseline. As one can see,

our policy does not have a significant performance impact on page load times.

36

Table 2.9: Performance overhead of cookie policies for links successfully loaded by all
four profiles.

Crawl 1 Crawl 2 Crawl 3
Accept all cookies 4617.66ms (-) 3343.37ms (-) 3040.97ms (-)
Accept third party
cookies from visited 4501.28ms (1.32%) 3329.86ms (-0.40%) 3140.19ms (3.26%)
Never accept
third party cookies 4519.64ms (1.73%) 3313.97ms (-0.88%) 3136.72ms (3.15%)
Our policy (Priv3+) 4617.66ms (3.94%) 3445.91ms (3.07%) 3106.58ms (2.16%)

2.8 Discussion

2.8.1 Robustness of the Heuristic

A natural question to ask at this point is whether our heuristic is robust to changes in

the way social widgets and advertisements are used on web pages. The following two

cases are possible.

In the first case, the OSN providers would start embedding their social widgets in

nested iframes to evade our heuristic. With our heuristic, these social widgets will never

be reloaded with user cookies when interacted with; the click will be just passed through.

As a result, the social widget will have to prompt the user to login again, inconveniencing

the user. Making it more difficult for the users to interact with social widgets only hurts

an OSN provider’s ability to obtain user behavior and provide a better user experience

as well as monetize its services. For this reason, there is no incentive for OSN providers

to provide their social widgets in nested iframes.

In the second case, the advertisements would be placed in single iframes to make

our heuristic fail to detect them. With our heuristic, clicks to an advertisement will not

be passed through, but the advertisement iframe will be reloaded. This action does

not benefit the advertisement network nor the advertiser for three reasons: First, the

37

advertiser would be losing a potential customer, resulting also in reduced revenue for

the advertisement network. Second, the reloading would cause additional impressions

and charges for the advertiser, in which case the advertisement network would have

to resolve this issue with additional cost. Finally, although reloading with cookies

would send the user cookies to the advertisement network or advertiser, any attempt

to track the users will not be successful: when the user visits another page containing

advertisements from this advertisement network or advertiser, those advertisements will

also be loaded without sending user cookies. For these reasons, there is no incentive for

the advertisement networks or the advertisers to place advertisements in single iframes.

These two cases suggest a lack of incentives for the OSN providers and advertisement

networks to evade our heuristic. In fact, there are incentives for them to place the social

widgets in single iframes and advertisements in nested iframes, respectively, such that

they can benefit from any user interaction with third-party content present in these

iframes as much as possible. Consequently, our heuristic will have fewer false positives

and false negatives.

2.8.2 Reloading Advertisement Iframes with Cookies

One can argue that a clicked advertisement shows the user’s intention to interact with

the advertiser, and thus, the advertisement iframe can be reloaded. This approach would

also alleviate the problems associated with the accuracy of our heuristics. Although

this action sounds plausible, this approach has the following problems: First, it is not

clear which iframe to reload because there may be multiple, nested iframes. Reloading

the parent may generate a different child iframe containing another advertisement less

relevant to the user. Similarly, reloading the child iframe may not end up producing

a more relevant advertisement. Even if this decision can be made, some iframes do

not have their ‘src’ property set preventing the reload. Most importantly, reloading

38

such iframes may have adverse effects for the advertisers, triggering new auctions and

double-charging for impressions and clicks. For these reasons, we pass the click to an

advertisement unchanged.

2.8.3 Evercookies

Evercookies use storage vectors (e.g., Flash cookie store) [76], which are not deleted when

the browser cookies are cleared. Trackers exploit these storage vectors to respawn old

cookie values to achieve a longer persisting tracking period. Our policy would prevent

these respawned cookies to be sent to third parties unless there is user interaction.

2.8.4 Cookie Synching

Our policy partially prevents cookie synching that uses previously set third-party cookies.

The prevention of third-party scripts to access cookie values (Section 2.5.6) may also

prevent other methods like using first-party cookie values as parameters for third-party

resources.

2.8.5 Behavioral Advertisements & Extended Web Analytics

Our policy prevents third-party tracking used for behavioral advertisements, which may

be deemed necessary for a sustainable web. A byproduct of this tracking is extended

web analytics, in which the aggregators can provide visitor demographics. There have

been multiple efforts to provide behavioral advertising that is privacy-preserving and

comparable to today’s systems [115,143,151]. Similarly, previous research, as well as our

system described in the next chapter, shows how the same aggregate information can be

obtained without violating user privacy [97, 98]. We think these efforts as well as our

39

policy are steps in the right direction to provide essential services for a sustainable web

without compromising user privacy.

2.9 Conclusion & Future Work

We proposed and explored a general and interaction-based third-party cookie policy.

With our policy, third party content is loaded without sending associated third-party

cookies, effectively preventing tracking by OSNs, data aggregators and behavioral

advertisers. This policy strikes a balance between functionality of social networking and

privacy by requiring user interaction to reload the social widgets with cookies when

the user wants. Our policy is general and does not depend on a blacklist, automatically

solving problems associated with maintenance, distribution and circumvention of the

blacklist. Finally, it supports non-tracking analytics and advertisement services, and

does not penalize publishers who use these more privacy-friendly tools.

We have evaluated our policy on web pages from popular websites. According to

our findings, our policy would work well in distinguishing social widgets and advertise-

ments, such that social widgets can be activated on-demand, with low false positives and

false negatives. While doing so, our policy does not impose a significant performance

overhead on page load times. Furthermore, our heuristic is robust to changes in the way

social widgets and advertisements are loaded, because there are no incentives for OSN

providers and advertisers to cheat our heuristic.

In the future, we hope to gather more users and obtain their feedback. Such feedback

will help us better understand how users perceive and treat different types of third-party

content. Ideally, we would like our policy to be implemented and supported in major

browsers, such as Mozilla Firefox, Google Chrome and Apple Safari. In the long run, we

hope that third-party service providers for advertisements, analytics and social widgets

40

will learn to respect user privacy by not requiring cookie values until the user interacts

with the third-party content.

As discussed in Section 2.8.5, our policy affects analytics services that depend on

third-party tracking. In the next chapter, we describe a web analytics system that can

provide (at least) the same amount of aggregate analytics information about visitors to

publishers without tracking users.

41

Chapter 3

Non-tracking Web Analytics

In this chapter, we present the design, implementation and analysis of a practical,

privacy-preserving and non-tracking web analytics system. Our system enables a

website publisher to directly query its users for extended web analytics information by

acting as an anonymizing proxy between the clients and the data aggregator. As a result,

no new system components are introduced into the ecosystem, making the system

more easily adoptable. The users also benefit from this arrangement, because they

are given anonymity and unlinkability properties via differential privacy mechanisms

while providing potentially sensitive data for analytics. This work was published in the

Proceedings of the ACM Conference on Computer and Communications Security (CCS)

in 2012 [81].

This chapter is organized as follows. The next section introduces the privacy problem

by third-party tracking in the web analytics ecosystem and motivates the need for a non-

tracking alternative. Section 3.2 presents our contributions to provide this alternative

approach. In Section 3.3, we describe the components existing in today’s systems as

well as in our system. Sections 3.4 and 3.5 list our functionality as well as privacy goals

and our assumptions, respectively. Section 3.6 presents an overview of our system.

42

In Section 3.7, we describe our system in detail. Section 3.8 presents an informal but

detailed analysis of our system. Our implementation and evaluation are presented in

Section 3.9. We conclude in Section 3.10.

3.1 Introduction

Website publishers use web analytics information to analyze their traffic and optimize

their site’s content accordingly. Publishers can obtain analytics data by running their

own web analytics software programs [7, 40, 41]. These analytics programs provide

publishers with statistics about users on their site, such as page views, clickstreams,

browsers, operating systems, plugins as well as frequency of returning visitors. However,

they do not provide other potentially useful information, such as user demographics.

For this reason, publishers often outsource the collection of web analytics to a third

party data aggregator, such as comScore, Quantcast or StatCounter [6, 62]. A data

aggregator collects data from users visiting a publisher’s website and presents these data

in aggregate form to the publisher. Besides being convenient for publishers, because

they only have to embed a small piece of code (i.e., a JavaScript code snippet), this

outsourcing allows publishers to learn statistical information they could not otherwise

learn from their own web server logs, such as the demographics of their users and

other websites their users visit. A data aggregator can infer this extended web analytics

information because it collects user data across many publisher websites. Compiling

extended web analytics via these collected data also benefits the data aggregator because

it can sell this information to advertisers and publishers alike.

Although this scheme is beneficial for the publishers and the data aggregators, it

raises concerns about users being tracked while browsing the web. This tracking enables

a data aggregator to compile detailed behavior of individual users, and infer individual

43

user demographics [144]. Thus, data aggregators are given a lot of information about

users’ actions on the web and have to be trusted that they will not abuse it. This trust

has been violated in the past [33, 47, 49].

Tracking affects not only users, but also the data aggregators themselves, who are

often criticized for this behavior. These criticisms have led to industry self-regulation

to provide opt-out mechanisms [10, 11, 50, 66], the Do-Not-Track (DNT) initiative in the

W3C, and many client-side tools, either to implement DNT [24, 52, 57], or to prevent

tracking outright [15, 23, 29, 70]. To the extent that these efforts take hold, the ability for

data aggregators to provide extended analytics to publishers will be degraded.

In addition, even with tracking, inferring accurate user demographics is a difficult

task that may produce inconsistent results. In 2012, we found examples of such inconsis-

tencies among the biggest data aggregators, Quantcast and Doubleclick. According to

Quantcast, 24% of rottentomatoes.com’s visitors in US were between 18 and 24, and 20%

were between 35 and 44. On the other hand, according to Doubleclick, these numbers

were 10% and 36%, respectively. Similar inconsistencies also existed for other sites.

Doubleclick has since discontinued their reporting of audiences for advertisement pur-

poses, whereas Quantcast stopped publishing audience data for sites that do not utilize

Quantcast for advertisement/analytics purposes.

In a more recent comparison between Alexa and Quantcast, we found the following

inconsistencies: grindtv.com, an extreme sports and entertainment site, is using Quant-

cast. Quantcast’s measurement states that 67% of the visitors are male [27]. On the other

hand, Alexa estimates that male and female visitors are almost equally distributed [26].

Similarly, usnews.com, another Quantcast using site, is reported to have a gender distri-

bution at 55% females and 45% males [65], whereas Alexa estimates that the males are

greatly under-represented on this site [64].

These examples show that tracking users and inferring results from collected infor-

44

mation may not be the best method for obtaining accurate extended web analytics (i.e.,

user demographics). An alternative (e.g., direct querying of user data) might be better

suited for this purpose, provided that user privacy is protected via anonymity.

3.2 Contributions

To address the above issues, we present the design and implementation of a practi-

cal, privacy-preserving and non-tracking web analytics system. In our system, user

information is stored in a database on the user device (client). We exploit the direct

communication that naturally takes place between the publisher and the users during a

page visit by having the publisher distribute database queries to clients, and by having

the publisher act as an anonymizing proxy for the (encrypted) answers from the clients

to the data aggregator. The aggregator aggregates the anonymous answers, and pro-

vides the aggregate results to the publisher. Both the publisher and the aggregator add

differentially-private noise before passing data on to each other.

To the best of our knowledge, we are the first to study the problem of collecting

extended web analytics information without tracking users. We describe and analyze

a novel design that provides the first practical solution to this problem. Our solution

eliminates the need for third-party tracking for extended web analytics purposes, does

not require new organizational players, and is practical to deploy.

Keeping user data at the client device and utilizing the publisher as a proxy between

the clients and the aggregator, our system allows publishers to directly query extended

web analytics rather than rely on inferred data. Combined with the differentially-private

noise mechanisms, our protocol enables aggregation of users’ private information, such

as demographics and websites visited, without violating individual user privacy (see

3.4.2 for details) under a set of realistic threat assumptions. As a result, the system can

45

provide better analytics than current services, in terms accuracy and variety.

While the decision to use the publisher as a proxy is good for deployability, it creates

new technical challenges because publishers can be malicious. In particular, they might

try to exploit their position in the middle by manipulating which clients receive and

answer queries, and to overcome the noise added by the aggregator using repeated

queries. Our system has mechanisms to raise the bar for such publishers and render

these attempts more difficult.

We implemented and evaluated our system to gauge its feasibility. We report on

performance benchmarks and describe our deployment across several hundred users.

3.3 Definitions & Components

We define extended web analytics as any additional information that the publisher

cannot obtain by investigating her own web server logs. Extended web analytics may

contain demographics (e.g., age, gender, education level, income, marital status) and web

browsing habits (e.g., other websites a user visits, search phrases used on search engines,

products viewed on shopping sites) as well as any other information regarding the user’s

environment (e.g., CPU load while viewing certain pages, applications installed).

There are three entities in today’s tracking web analytics systems: the publisher, the

data aggregator, and the client. Publishers create websites. Data aggregators provide

publishers with aggregation service for web analytics. Users use their clients (e.g., the

browser) to access and consume the content that publishers host.

Figure 3.1 shows the interactions between these entities today. When clients visit the

publisher’s website (step 0), they also send analytics data to the data aggregator via the

code snippet installed on the publisher’s website (step 1). After collecting information

from individual clients, the data aggregator aggregates analytics information (step 2),

46

Figure 3.1: Operation of today’s tracking web analytics systems.

during which the aggregator infers extended web analytics information. The aggregator

then shares aggregate result with the publisher (step 3).

Our system consists of the same components. However, as we describe later, our

protocol eliminates the need for tracking to obtain extended web analytics.

3.4 Goals

3.4.1 Functionality Goals

We would like our system to provide publishers and data aggregators with at least

the same aggregate information they obtain in today’s systems. More specifically,

publishers should get more accurate and more types of web analytics information than

they do today if possible. Data aggregators should also obtain web analytics information

for all of their partner publishers like they do today, as an incentive for performing

aggregation. Note that today most data aggregators provide behavioral advertising,

47

for which they require individual user information, and not aggregate data. Given that

other research shows how to accomplish behavioral advertising without exposing user

information [115, 151], we assume that the data aggregator requires only aggregate data.

We would also like to avoid requiring new players like proxies. While potentially

useful for the operation of the system, additional players can also hinder adoption and

practicality.

Ideally, we would want our system be more efficient than today’s systems, it might

not also be possible given our other functionality and privacy goals. As a result, our

system should scale at least adequately.

Finally, the system should not allow clients or publishers to manipulate results

beyond what is possible today (i.e., via botnets).

3.4.2 Privacy Goals

Our main user privacy goal is to eliminate third-party tracking of users across the web.

To this end, we want to provide the visitors with anonymity from the data aggregator.

Today, unless a visitor uses a proxy, she is exposed to the aggregator via her network

address.

The network address is, however, not the only identifier the aggregator can use

to track a visitor across the web. Unique pieces of information about a visitor, either

individually or as a combination, can enable the aggregator to identify a user. Although

the visitor may have anonymity through other means (e.g., proxy), it may still be possible

for the aggregator to anonymously profile a visitor. To mitigate this problem, our system

should ensure that the information obtained by the aggregator is unlinkable.

Our system should also give users information about their privacy loss with respect

to each publisher and each data aggregator. Such information is available within the

48

formal guarantees of differential privacy (DP) [104]. Besides DP’s privacy loss concept,

its noise mechanism also helps us to achieve our unlinkability goal.

Privacy Non-goals. While each client in our system knows about its privacy loss, it

should be noted that such knowledge at the client is of limited value. DP is very conser-

vative, because it assumes that the attacker may have arbitrary auxiliary information it

can use to discover information about users in the database. When the attacker does not

have this auxiliary information, which is the common case, DP’s measure of privacy loss

is overly pessimistic. Although a client in our system could, in theory, refuse to answer

queries if a privacy budget is exceeded, doing so is not practical in our setting, because a

query may be legitimately repeated from time to time (e.g., to measure changes in the

user base). Furthermore, DP’s privacy loss measure assumes a static database, whereas

in our setting, the “database” is dynamic: the user population for a given publisher

changes almost constantly, and some individual user data may change as time passes.

For these reasons, it is unrealistic, and in our setting, unnecessary to set a hard limit

on user privacy loss (i.e., budget). In this regard, we do not aim to provide users with

formal DP guarantees. Nevertheless, we find DP to be a valuable mechanism, in part

because it provides a worst-case measure of privacy loss, but primarily because the

noise added to answers substantially raises the bar for the attacker, while still providing

adequate accuracy for aggregate results.

3.5 Assumptions

3.5.1 Client

We assume that the users trust the client software, in terms of the data it stores locally

and its operation, just as they trust their browser software today. While it is possible

49

for a browser to be infected by malware, such malware is in a position to violate user

privacy in many ways beyond our system; thus, we do not protect against this threat.

By contrast, we assume that the clients may be malicious towards the publisher and

the data aggregator. A malicious client may attempt to distort aggregate results, similar

to the situation today where a client may, for instance, participate in click fraud. It may

also try to violate the privacy of other users, possibly colluding with the publisher.

3.5.2 Data Aggregator

We assume that the data aggregator is honest-but-curious (HbC); in other words, that it

obeys the prescribed operation, but may try to exploit any information learned in the

process. As an HbC player, we assume that the data aggregator does not collude with

the publishers. In principle, a malicious publisher could of course simply choose to

work with a malicious data aggregator. We assume a setup whereby aggregators state

their non-collusion in a privacy statement, making them legally liable and subject to

punishment (e.g., by the FTC). An aggregator that is also a publisher would have to

internally separate information.

We justify such an HbC aggregator on the assumption that the client software plays

an overseer role, and allows only HbC aggregators to participate. For instance, the

browser could refuse inclusion to any aggregator that does not provide such a privacy

statement, or appears untrustworthy for any other reason. Today, browsers already play

a similar role in a number of respects, such as by selecting default certificate authorities

and search engines, and in some cases, by warning users of potentially harmful websites.

In today’s industry setting where major data aggregators can generally be expected to

operate within the legal framework of their own stated privacy policies, we think that

this assumption is reasonable.

50

As stated earlier in our goals, we assume that the data aggregator requires only

aggregate data in the context of web analytics. We leave behavioral advertising outside

our scope and refer the readers to other research [115, 151].

3.5.3 Publisher

We assume that the publisher is selfishly malicious both towards the users and the data

aggregator, meaning that the publisher will try to only benefit itself. As a potentially

malicious player, the publisher may try to violate the privacy of users with correct

clients. In particular, because the publisher distributes queries and collects answers,

it is in a position to selectively query clients, drop selected client answers, and add

answers beyond those required for DP noise. This position leads, for instance, to an

attack whereby the publisher isolates a single client by dropping all answers except for

those of the single client, and providing fake answers instead of the dropped answers.

With repeated queries to such an isolated client, the publisher may overcome the added

DP noise. The publisher may also be motivated to falsify the results it gives to the data

aggregator, for instance, to appear more popular or more attractive to advertisers. Our

design has mechanisms to mitigate the effect of these behaviors. Note, however, that we

assume that the publisher correctly adds DP noise to answers, because withholding noise

does not benefit the publisher, and the minor reduction in overhead gained (Section 3.9)

is not adequate incentive.

Publishers today can directly measure user activity on their websites (e.g., pages

visited, links clicked). In addition, websites can often legitimately obtain additional in-

formation directly from users, such as personally identifiable information (PII), shopping

activity, friends and hobbies. Information obtained directly from users by publishers is

considered outside our scope.

51

3.5.4 Incentives

The incentives for the publisher and the aggregator are that they can obtain more

accurate web analytics, because we directly measure attributes rather than infer them.

Furthermore, they can get more types of web analytics that are not available today, such

as how many pages users visit in a certain period or search engines used by the users of a

publisher (Section 3.9). We do not think that users are incentivized. Although publishers

could offer incentives to users (e.g., better content for participating users) to create an

incremental deployment environment, we think that the browser is a better option for

deployment. These entities (i.e., publishers, aggregators, and browsers) should also be

motivated to provide better privacy to users. Even though we do not know for certain

whether our stated incentives are adequate, we think that they are at least feasible.

3.6 System Overview

Our system comprises the same three entities that exist today: the client, the publisher,

and the data aggregator (Figure 3.2). The publisher plays an expanded role: it distributes

queries to clients, and it proxies client-aggregator communication. This role requires the

publisher, or its hosting center, to install new software. While this requirement reduces

ease-of-use compared to today, we think it is reasonable: many publishers already run

their own analytics software [6, 7, 40, 41, 62] and hosting companies already offer servers

with web analytics software pre-installed [18, 31, 42].

The client gathers and stores user information in a local database. Using this local

database, the client requests and answers publisher queries when the user visits pub-

lisher sites. While the operation of the client is automatic, the user can always stop the

client from gathering information or answering publisher queries.

52

The information collected and stored by the client can consist of extended web

analytics (e.g., demographics, browsing behavior). We envision that the client scrapes

most of this information from web pages the user visits (with informed user consent),

such as online social networks, shopping websites and search engines, or the client can

infer some information, like income. This scraping functionality can be supported by the

browser. A recent and similar example is the Firefox User Personalization project [20,63].

The browser may also implement basic messaging, encryption and database mechanisms,

and provide a sandboxed plugin environment for clients from different aggregators. The

user can also provide some information directly.

To distribute queries to clients, publishers post queries at well-known URLs on their

websites. When clients visit a website (step 0 in Figure 3.2), they download and read the

queries (step 1).

Queries may be formulated by both the publisher and the data aggregator. While

the queries themselves may be quite complex (i.e., SQL), the answers are limited to ‘yes’

and ‘no’ values. For instance, for the age distribution of users, the query effectively

asks clients to evaluate ‘yes’ or ‘no’ for each age range of interest (e.g., <18, 18-34, 35-50,

>50). This answering mechanism is achieved by defining buckets, such that each bucket

corresponds to a potential answer value, and by mapping the query result to these

buckets. Ultimately, the aggregator generates a per-bucket histogram of user counts.

One benefit of using such bucket definitions is to limit the distortion a malicious client

can impose on the aggregate result.

Each generated answer is separately encrypted with the public key of the data

aggregator (step 2). Queries may have thousands of defined buckets, most of which

have ‘no’ answers; for instance, one for each website a user may visit, or for each interest

a user may have. To reduce the number of cryptographic operations, ‘no’ answers are

omitted at the client. Instead, clients generate a specified number of answers which are

53

Figure 3.2: Query workflow of our system.

54

either ‘yes’ or ‘null’. For example, a query may specify that every client produces exactly

20 answers for the websites a user has visited in the last week, regardless of the actual

number of visited websites. If a client has not visited 20 different websites, it generates

‘null’ answers for the difference. If it has visited more than 20 websites, then it cannot

report on every website visited.

After collecting the encrypted answers from clients (step 3), the publisher generates

DP noise separately for each bucket. Knowing these bucket definitions enables the

publisher to generate the noise in the form of additional answers. It then mixes the real

and noise answers (step 4), and forwards all answers to the data aggregator (step 5).

The data aggregator decrypts the answers, computes the histogram of bucket counts,

and adds DP noise to each count (step 6). After signing the result, it transmits the counts

to the publisher (step 7). The publisher then subtracts the noise it originally added (i.e.,

the number of additional answers for each bucket) to obtain its own final counts (step 8).

In the end, the publisher and the data aggregator both obtain aggregate results for

the query. Because of the noise, neither of them obtains an exact result: the publisher’s

result contains the noise the aggregator added, whereas the aggregator’s result contains

the noise the publisher added.

If the publisher or the data aggregator wishes to release a result to the public, then

they release the “double-noisy” result that was passed to the publisher in step 7. This

precaution prevents the publisher and the aggregator from computing the noise-free

result by subtracting their own noise, should the other publish its “single-noisy” result.

3.6.1 Audits

Clients occasionally audit publishers to detect if a publisher is dropping client answers

(Figure 3.3). To audit a publisher, the client generates and encrypts a nonce (Step 2), and

55

Figure 3.3: Auditing mechanism of our system.

transmits it to the publisher instead of the answer the client otherwise would have sent

(Step 3). The client also encrypts the nonce and the publisher to create a nonce report. This

nonce report is then transmitted to another, randomly selected publisher (Step 4), which

forwards it to the data aggregator (Step 5). If the data aggregator often receives nonce

reports without the corresponding nonce answer, it suspects the publisher of dropping

client answers.

3.7 Design

In this section, we describe how queries are generated and distributed, how the client

generates a response and helps in auditing publishers, and how differentially-private

noise is added by the publisher and the data aggregator.

56

3.7.1 Differential Privacy Background

A computation, C, provides (ε, δ)-differential privacy [104] if it satisfies the following

inequality for all datasets D1 and D2 differing on one record and for all outputs S ⊆

Range(C):

Pr[C(D1) ∈ S] ≤ exp(ε) × Pr[C(D2) ∈ S] + δ (3.1)

In other words, the probability that a computation C produces a given output is almost

independent of the existence of any individual record in the dataset. In our setting, this

dataset consists of the values of clients for a given attribute.

Differential privacy is achieved by adding noise to the output of the computation.

This noise is independently generated for each component in the dataset. There are two

privacy parameters: ε and δ. The trade-off between the accuracy of a computation and

the strength of its privacy property is mainly controlled by ε: a smaller ε provides higher

privacy, but lower accuracy.

The parameter δ relaxes the strict relative shift of probability. If δ = 0, then the

(ε, δ)-differential privacy falls back to the classical ε-differential privacy, which can be

achieved by adding the Laplace distribution noise with a standard deviation
√

2∆C/ε,

where ∆C is the sensitivity of the computation, and is 1 for a computation counting set

elements [103].

A non-zero δ is required in some scenarios where the inequality (3.1) cannot be

satisfied [104]. Such (ε, δ)-differential privacy can be achieved in our system by adding

the aforementioned Laplace distribution noise with a complementary resampling mech-

anism (Section 3.7.5.1).

57

Table 3.1: Query fields
QId Query ID

ps Query selection probability
pa Audit probability
Te Query end time
B Set of answer values (buckets) each with ID bi. (‘null’

and ‘Not Applicable’ (N/A) are well-known IDs)
A Required number of answers
εP differentially-private noise parameter for the publisher’s result

(used by the data aggregator)
εDA, δ differentially-private noise parameters for the data aggregator’s result

(used by the publisher)
S QL Database query

3.7.2 Queries

Publishers are required to list all their queries at a well-known URL on their website.

This query list is signed by the data aggregator, even if there are no queries (i.e., an

empty list). The aggregator may periodically check to ensure that the list is posted at the

well-known URL (e.g., via fake clients it has deployed) to detect malicious publishers

isolating clients by controlling the distribution of queries to clients. When a client visits

a website, it retrieves the query list if the previous list has expired. Table 3.1 shows the

fields contained in each query in the list.

QId is unique among all queries across all publishers working with this data aggrega-

tor. For each query in the list, the client decides whether to answer or ignore the query.

This decision is made with the selection probability ps assigned by the publisher, such that

the publisher can obtain enough answers from its user base given the expected number

of client visits. δ could be computed based on the expected number of answers. If the

client decides to answer the query, then it separately decides whether to audit the query

with audit probability pa assigned by the data aggregator, by replacing the answer with a

nonce. The query end time is the deadline for answering queries.

58

The buckets B are the potential answer values that are pre-defined. They may

be downloaded separately and cached, if |B| is large. The aggregator sets the noise

parameter εDA, and checks each query’s εP to ensure it generates adequate noise before

signing the query list.

The SQL query may produce zero or more numerical values or strings. Each bucket

is defined as a numerical range or a string regular expression, such as salary ranges

(numerical), or websites visited (string). A bucket is labeled as ‘yes’ if a row in the

SQL output falls within the numerical range, or matches the regular expression. In

addition, buckets have instructions to be followed when the same SQL output labels

multiple buckets as ‘yes’ (e.g., select one or all), and the number of ‘yes’ labeled buckets

exceeds the allowed number of answers A (e.g., select most frequently occurring or

random buckets). If the client does not have A number of ‘yes’ labeled buckets, it uses a

well-known bucket ID ‘null’.

As an example, suppose a publisher wants to learn the age distribution of its female

users. The SQL can be “SELECT age FROM LOCAL DB WHERE gender = female”.

The buckets can be B = {< 18, 18 − 34, 35 − 50, > 50}, and A = 1.

An SQL query often has predicates, such as “WHERE gender = female” in the

above example. These predicates enable the publisher to query different segments of its

user base. Too specific predicates, however, may produce results that are not useful in

aggregate. To enable the publisher to notice that the predicates are too narrow, we define

another well-known bucket ID ‘Not Applicable’ (‘N/A’), used by the client when the

query predicates fail. This well-known bucket ID is also useful for the data aggregator to

detect malicious publishers who may set very specific predicates to isolate a client and

repeat the query to overcome the noise (e.g., few answers with bucket IDs other than

‘N/A’).

59

3.7.3 Query Response

If the client software decides to answer a query according to a coin toss with bias ps,

it executes the S QL on its local database (step 2 in Figure 3.2) and produces the set of

buckets labeled ‘yes’ (i.e.,M). If no predicates match, the client generates A answers

with the well-known bucket ID ‘N/A’. Each answer is individually encrypted with the

public key of the data aggregator:

Response = EncDA pub{QId,N/A} (A times)

If the predicates match and |M| ≤ A, the client produces A individually encrypted

answers, where |M| answers contain the matching bucket ID bi ∈ M, and A−|M| answers

contain the well-known bucket ID ‘null’ :

Response =


EncDA pub{QId, bi} ∀bi ∈ M

EncDA pub{QId, null} (A − |M| times)

If |M| > A, the client selects A buckets according to the instructions and produces A

individually encrypted answers as its response.

To illustrate, assume a query asks the 20 most visited sites. If a client visited only 14

sites, it generates 14 answers with bucket IDs representing these sites and six answers

with bucket ID ‘null’. In contrast, if the client visited 25 sites, it generates only 20 answers

for the 20 most visited sites.

Note that the combination of answer values (e.g., websites visited) may uniquely

identify a client and allow the aggregator to track the user across different publishers

asking this query. By individually encrypting each answer value, our system prevents

the data aggregator from exploiting this information for tracking.

60

In certain cases, such combination of answers may be useful for web analytics. In

these cases, the publisher and the aggregator can enumerate the combinations and use

these combinations as answer values. Note that the number of clients with each unique

combination may be low, such that the noise (Section 3.7.5) may dominate in the final

result. As a result, the utility of the results may be reduced.

After generating the response, the client transmits it to the publisher along with the

query ID (step 3 in Figure 3.2):

C → P : QId,Response

The client then records that it answered the query so as not to answer it again before

the query end time Te. It also records the ε values to track the user’s privacy exposure to

the publisher and the aggregator. Note that the publisher may store client IP addresses

answering this query to prevent a malicious client from skewing the aggregate result by

sending many responses for the same query.

3.7.4 Audit Response

The audit serves two purposes. First, it can detect when a publisher is dropping client

answers. Second, it can detect when a publisher is adding a substantial number of fake

answers (beyond the noise).

The clients periodically generate nonces and obtain blind signatures from the data

aggregator [95]. If a client decides to audit the publisher, it picks a nonce, encrypts the

nonce and the QId with the aggregator’s public key as well as A − 1 ‘null’ answers, and

61

transmits the response to the publisher as if it was a real response:

Response =


EncDA pub{QId, nonce} once

EncDA pub{QId, null} (A − 1 times)

The client also randomly selects a different publisher, which is a customer of the aggre-

gator. The client then transmits a separate, encrypted copy of the nonce and the nonce’s

blind signature blind sig to that publisher:

NR = (EncDA{QId, nonce}, blind sig)

This nonce report cannot be directly submitted to the data aggregator, because the

aggregator would learn which publisher a client has visited and decided to audit.

Obtaining nonces in advance of the audit prevents the aggregator from correlating blind

signature requests to nonce responses or reports. If the client has depleted its nonces

with blind signatures, it generates a nonce, requests a new blind signature from the

aggregator and delays its nonce response for a random amount of time until the query

end time, Te.

Each publisher periodically forwards received nonce reports to the aggregator. The

client learns the set of other publishers by periodically downloading a list from the aggre-

gator. This list associates a probability with each publisher that is roughly proportional

to the number of answers each publisher handles. The client selects the different pub-

lisher according to this probability. As a result, each publisher handles a fair proportion

of nonce reports.

If the aggregator consistently receives nonce reports via different publishers without

a corresponding nonce message from the audited publisher, the aggregator suspects

the audited publisher of dropping messages, possibly in an attempt to isolate a client.

62

In this case, the aggregator can validate this suspicion by masquerading as real clients

from browsers it controls, and sending audits from these clients. This check is necessary

because a malicious client may have sent nonce reports via different publishers, without

the corresponding nonce via the audited publisher to cast suspicion on it.

The aggregator knows the probability of sending an audit response instead of a query

response. As a result, it can estimate the number of clients answering this query by

dividing the number of audit responses received by the audit probability pa . It can also

calculate the proportion of audit responses to query responses that should be received.

If this proportion is consistently too low, then the aggregator suspects the publisher of

adding additional fake answers.

The purpose of the blind signatures is to limit the rate a client can generate audits,

which is helpful for two reasons. First, it drastically reduces the amount of suspicion

a malicious client can cast on publishers by just sending the nonce reports, but not the

nonces, as described above.

Second, by ensuring that these blind signatures are only assigned to clients and not

publishers, the data aggregator prevents a malicious publisher from trivially generating

many fake audits. Using these fake audits, the publisher could either drop client

answers for an isolation attack without considering the possibility that they may be

audit responses, or generate many fake answers by maintaining the right proportion of

audits to answers. This use of blind signatures ultimately raises the bar for the publisher

by forcing it to use botnet clients.

The blind signatures are timestamped to prevent an attacker from hoarding them for

later use [75, 91, 110]. These timestamps are coarse-grained (e.g., end of the week) to

prevent the aggregator from linking signatures to clients.

63

3.7.5 Noise Generation

3.7.5.1 Noise at the Publisher

The publisher generates differentially-private noise, rounded to the nearest integer, for all

buckets using the data aggregator’s noise parameters (i.e., εDA, δ),NP = {nP,1, nP,2, ..., nP,b},

where b is the number of buckets (shown as Noise P in step 4 in Figure 3.2). Remember

that the publisher will forward the client answers to the data aggregator after adding

noise. The client answers without noise would result in non-negative bucket counts

when the aggregator decrypts and counts them. As a result, the mechanism for generat-

ing noise is to create additional answers. However, the amount of noise to add may be

positive or negative.

If the noise is positive for a bucket, the publisher can generate that many additional

answers with that bucket value, such that the data aggregator will obtain a count

including the noise.

On the other hand, if the noise is negative for a bucket, the publisher cannot simply

pick encrypted answers belonging to that bucket and drop them: the answers are

encrypted with the aggregator’s key, such that the publisher cannot know which bucket

value an answer has. Furthermore, if there are no client answers with that bucket value,

the count the aggregator should get should have a negative value (i.e., just the noise).

This negative bucket count, however, cannot be achieved because there are no client

answers with that bucket value for the publisher to drop.

To be able to generate also negative noise, we define an offset value o, which the

aggregator will subtract from each per-bucket count. The number of additional answers

supplied will be greater or less than this offset to create positive or negative noise,

respectively.

64

To give an example, if the offset is 20, and the noise is +4, the publisher creates 24

answers for the given bucket, and the aggregator later subtracts 20 from the bucket’s

count. On the other hand, if the noise is -5, the publisher creates 15 answers. Stated

precisely, the publisher calculates the number of per-bucket answers to create as:

N
′

P
= {nP,1 + o, nP,2 + o, ..., nP,b + o}

= {n
′

P,1, n
′

P,2, ..., n
′

P,b}

These noise answers are encrypted with the aggregator’s public key; hence, indistin-

guishable from client answers. After the query end time Te, the combined set of client

answers and noise answers RDA are randomly mixed and sent to the aggregator along

with the query ID and offset value:

P→ DA : QId,RDA, o

The aggregator decrypts the answers, counts them, and subtracts the offset to obtain

the noisy result:

R
′

DA = {r1 + n
′

P,1 − o, r2 + n
′

P,2 − o,

..., rb + n
′

P,b − o}

= {r1 + nP,1, r2 + nP,2, ..., rb + nP,b}

where ri is the count of client answers belonging to bucket bi, and nP,i is the publisher’s

noise value for bucket bi.

At this point, the data aggregator can make two checks to detect potential malicious

publisher behavior. First, the aggregator can estimate the number of expected answers

based on the number of audits received for this query and the audit probability pa. After

65

accounting for the expected noise answers (i.e., b × o), if the received number of answers

is significantly higher or lower than the expected number of answers, the aggregator

suspects the publisher of adding or removing answers, respectively.

Second, after obtaining the bucket counts, the data aggregator can check for anomalies

in this publisher’s results. For instance, if the results for the same query consistently

show low-value buckets along with high-value buckets (e.g., ‘female<3’, ‘N/A>1K’), the

publisher may be trying to isolate a client’s answer and overcome the noise. In this case,

the aggregator may suspect the publisher, check the query predicates manually, and/or

may not return the result.

There remains the question of how to set the value of o. The noise value cannot

exceed the offset, and must be resampled when nP,i < −o. Even with this resampling, our

procedure still provides (ε, δ)-differential privacy. The proof is elsewhere [81]. According

to the theorem provided in [81], the offset o is set as:

o ≥ λ ln
((

e
A
λ − 1 + δ/(2A)

)
A/δ

)
(3.2)

where λ ≥ 2A/εDA. [125] argues that, for differential privacy guarantees to be met, δ < 1/c,

where c represents the number of clients answering this query. Since in our setting a

client may answer the same query multiple times, we require δ < 1/(m × c), where m

represents the maximum number of times a client can answer the same query. For our

purposes, we assume a conservative setting of m = 1000: if the same query is posed

multiple times to adjust for changing user data and the query frequency is once per

week, a value of 1000 for m corresponds roughly to 20 years. Recall that, as stated in our

goals (Section 3.4.2), we do not aim to enforce a budget and provide strict differential

privacy guarantees.

66

3.7.5.2 Noise at the Data Aggregator

After aggregating the answers and obtaining the noisy results, R
′

DA, the data aggregator

generates Laplace noise using the ε value specified by the publisher (i.e., εP), NDA =

{nDA,1, nDA,2, ..., nDA,b} (shown as Noise DA in step 6 in Figure 3.2) for each bucket. The

data aggregator then computes the double-noisy results RP:

RP = R
′

DA + {nDA,1, nDA,2, ..., nDA,b}

= {r1 + nP,1 + nDA,1, r2 + nP,2 + nDA,2,

..., rb + nP,b + nDA,b}

Then, this result is signed by the data aggregator and sent to the publisher (step 7 in

Figure 3.2):

DA→ P : QId,RP

When the publisher gets RP, it removes its own noise and obtains its own noisy

results, R
′

P, (step 8 in Figure 3.2):

R
′

P = RP − {nP,1, nP,2, ..., nP,b}

= {r1 + nDA,1, r2 + nDA,2, ..., rb + nDA,b}

where ri is the count of client answers belonging to bucket bi, and nDA,i is the aggregator’s

noise value for bucket bi. In the end, the aggregator’s result contains the differentially-

private noise added by the publisher (i.e., R
′

DA), whereas the publisher’s result contains

the differentially-private noise added by the aggregator (i.e., R
′

P).

67

3.8 Analysis

3.8.1 Data Aggregator

Although the data aggregator follows the prescribed operation and does not collude

with publishers, it may still be motivated to track clients across publishers and may try

to exploit any information it learns. This information can include identifiers associated

with clients, allowing the aggregator to track them. In the absence of a proxy, one such

identifier is the client IP address. By using the publisher as an anonymizing proxy, our

system hides IP addresses from the aggregator during the collection of answers.

The aggregator may try to obtain other identifiers by manipulating query parameters

(i.e., εDA, εP, and pa), and the audit activities (i.e., assignment of blind signatures and

publisher probabilities for nonce reports). For example, an answer to a common query

(e.g., a rare occupation) can be distinguishing among clients. The DP noise added by the

publisher solves this problem (Section 3.7.5.1). To minimize this noise, the aggregator

may set a large εDA value, but it would be easily detected by clients and industry

regulators.

Besides rare answers, the combination of answers can also act as an identifier for a client.

For example, a client’s response to a query about most visited sites may be unique. Our

system solves this problem by separately encrypting each answer at the client (Section

3.7.3) and mixing client answers with noise answers at the publisher (Section 3.7.5.1).

The aggregator has no incentive to use a large εP, which would only serve to reduce

noise for the publisher.

In the auditing mechanism, the nature of the blind signatures and coarse-grained

timestamps prevents the aggregator from connecting nonce reports back to clients. The

aggregator may set a large audit probability for one publisher, and small probabilities

68

for other publishers. This high probability would cause the clients of the first publisher

to obtain blind signatures more often than others; hence, enabling the aggregator to infer

the publisher these clients visit. However, unusually high audit probabilities will raise

suspicion among clients and regulators. Furthermore, the utility of the first publisher

will suffer, triggering suspicion.

3.8.2 Publisher

A potentially malicious publisher may want to exploit its position in the middle to learn

an individual client’s information, and falsify the results the data aggregator gets. The

publisher can control the query parameters (i.e., S QL, A, B, εP, ps), the distribution of

queries, the collection and forwarding of responses and nonce reports, the noise process,

and the publishing of final results. We analyze how a publisher can try to exploit these

parameters, and discuss how our system raises the bar for these attempts to succeed.

3.8.2.1 Publisher Attacking Clients

A client’s response is encrypted with the aggregator’s public key. The client also sends

a fixed number of answers (i.e., A), preventing the publisher from learning how many

buckets were matched for a query. Absent collusion, the publisher cannot learn an

individual client’s answer from the aggregator, and obtains only noisy aggregate results.

To minimize the noise the aggregator adds, the publisher may set a large εP value. By

enforcing a maximum εP value, the aggregator can ensure that it will add enough noise

to protect users’ privacy (Section 3.7.5.2). Nevertheless, a publisher may try to learn a

client’s answer, by isolating it and repeating the same query to overcome the noise. We

discuss how our system raises the bar for such a publisher.

Isolation via selectively dropping other clients’ answers. To isolate a client’s answer,

69

a malicious publisher may drop answers from other clients and replace them with fake

answers it generates. If the publisher drops some clients’ answers, then it cannot be

certain what the remaining answers are and cannot deduce what the isolated client’s

answer value is. If the publisher drops all the answers from all other clients, then these

answers will contain nonces. When the aggregator consistently receives reports via other

publishers, but not the nonces from the audited publisher, it suspects the publisher of

dropping answers and can confirm this suspicion by masquerading as real clients and

sending nonces through the publisher (Section 3.7.4).

To allow the malicious publisher to drop answers, other colluding publishers may

drop nonce reports. However, they cannot selectively do so to help their partners,

because they do not know about which publisher a given nonce report is. The aggregator

also knows approximately how many reports a publisher should forward (i.e., via the

publisher’s probability to be randomly selected), and if it does not receive enough reports,

it suspects the publisher of dropping them. For these reasons, a malicious publisher

cannot easily help another malicious publisher to drop answers without detection.

Isolation via dropping target client’s answer. A difficult, but theoretically possible

attack is for the publisher to repeat a query and obtain results, half of which contain

the target client’s answer, and half of which do not. By comparing the average result

of these two sets of queries, the publisher can determine if the target client’s answer is

positive or ‘null’. The auditing mechanism may not detect this attack, because the audit

is relatively rare, and thus, the target client may generate zero or very few audits. This

attack is hard to carry out, because the client population may change over time, and

because if the selection probabilty ps is less than 1, different clients will answer different

queries. In both of these cases, the non-noisy value would change a bit with successive

queries; thus, requiring even more queries to eliminate the effect of noise.

Nevertheless, we simulated this attack, assuming a fixed set of 100 clients, one of

70

whom is the target client. We execute the same query Q times, varying Q from 30 to

2000. We also vary the selection probability ps to be 1.0, 0.5, and 0.05. When ps = 1.0,

we drop the target’s answer half the time. For ps = 0.5 and ps = 0.05, there is no need

to intentionally drop the target answer, because it is often naturally not provided. We

average the counts for queries with and without the target. If the difference in the

average is greater than 0.5, we guess that the target’s answer is 1 (i.e., ‘yes’). If it is less

than 0.5, we guess that the target’s answer is ‘null’. We vary the number of queries Q,

run 10000 trials for each Q, and calculate the percentage of times the guess is correct.

This percentage is the publisher’s confidence after Q queries.

Figure 3.4 shows the results of our simulation for the cases where the selection

probability ps is 1.0, 0.5, and 0.05 using ε = 0.5. When ps = 1.0, it takes over 350 queries

to reach 95% confidence. Assuming one query per week, this attack would take roughly

seven years. In the cases of ps = 0.5 and ps = 0.05, the attacker requires about 1000 and

2000 queries, respectively, for the same level of confidence.

Isolation via buckets or SQL. The publisher can also isolate a client by manipulating the

query such that only the target client provides a positive answer (or, conversely, all clients

except the target client provide positive answers). This attack can be accomplished either

by manipulating the SQL predicate, or the bucket definitions (i.e., to include PII or a rare

combination of attributes). Our general approach to both of these methods is to monitor

answers for clues signaling that this attack may be happening, and to manually inspect

SQL queries when these clues appear. While manual inspection is not ideal, we think

that it will not be needed very frequently: Most publishers will probably ask the same

types of queries. As a result, most of the queries will come from an already approved

library, reducing the effort by the aggregator to monitor the queries and the buckets.

To start such a manual inspection when needed, the clue we are searching is any

bucket whose count is consistently very low (roughly 0) or consistently very high

71

Figure 3.4: Confidence level for the isolation attack via dropping target’s answer using
the noise parameter ε = 0.5.

72

(roughly the number of answering clients) for the same repeated query. For instance,

if the predicate isolates the user (i.e., the user’s name), then we expect to see very

low bucket counts, except for the ‘N/A’ bucket, whose value will be very high. If the

predicate does the reverse (i.e., includes all clients but the target), then the count of the

‘N/A’ bucket will be very low, and the other buckets will be very high. A very low ‘N/A’

bucket is suspicious, because in this case the predicate is apparently not needed and

should be dropped. Likewise, if the target user is isolated by a rare bucket definition,

then certain buckets will have very low counts. In this case, we can expect an honest

publisher to modify its bucket definitions to prevent such consistently low counts.

Recall that a malicious publisher cannot just create an arbitrary number of fake

answers to inflate the counts of these buckets: The aggregator would expect a certain

number of nonces according to the audit probability of the query. To generate the right

amount of nonce responses and reports, the publisher would require blind signatures

(i.e., tokens) from the aggregator, who only assigns these tokens to clients and not the

publishers. As a result, the publisher would be forced to use more clients (i.e., a botnet).

In some cases, however, examining the SQL may not be adequate. One such example

is a predicate like “WHERE page-visited = example.com/UniqueURL”, where

UniqueURL is provided only to the isolated client. In this case, the aggregator must

check that the URL is provided to multiple clients by operating fake clients. Nevertheless,

such queries would generate high ‘N/A’ counts. Similar to the above case, we can expect

an honest publisher to modify its bucket definitions to obtain more useful information

and reduce such consistently high counts for the answer ‘N/A’.

Isolation via query distribution. A malicious publisher may send a query to only one

client. The aggregator, however, can ensure that the queries are available at well-known

URLs at the publisher site via its own fake clients. Our auditing mechanism can also be

extended to send reports when the query list or any queries are not accessible by clients.

73

Other attacks. By enforcing a maximum A value, the aggregator can ensure that clients

do not spend unnecessary resources (e.g., CPU, bandwidth) while answering queries, to

prevent denial of service attacks by the publisher.

There is no clear incentive for a selfishly malicious publisher not to add DP noise.

Even so, the aggregator can still detect suspicious behavior: The aggregator can estimate

the number of clients ce as the number of audit reports received divided by the audit

probability pa. The approximate total number of expected answers is therefore (ce × A) +

(b × o), where b is the number of buckets, o is the offset, and A is the number of answers

per client. If answers are substantially lower than this value, the publisher is suspected.

A malicious publisher can publish its own single-noisy results that include only the

aggregator’s noise. However, these results will not have the aggregator’s signature; thus,

exposing the publisher. Furthermore, the aggregator can detect this behavior because it

knows the double-noisy results.

3.8.2.2 Publisher Falsifying Results

To appear more popular or more attractive to advertisers, a publisher may want to

falsify results by generating many fake answers. If the publisher exceeds the number

of answers expected by the aggregator (i.e., ce × A + b × o), it will be suspected. Thus, it

can only generate answers that belong to certain buckets and is limited by the number

of buckets and the offset (i.e., b × o). This number may not be significant for queries

with few buckets, depending on the total number of answers. For instance, it is 100 for a

query about gender distribution with 5000 answers and an offset of 50.

On the other hand, b × o can be large for queries with many buckets. If all fake

answers are used in few buckets, all other buckets would have values close to −o after

the offset subtraction. The probability of simultaneously generating these noise values

74

is extremely low, signaling a manipulation. To prevent detection, the publisher would

distribute the fake answers more evenly, limiting its distortion in a bucket.

3.8.3 Client

A client may act maliciously towards the publisher, the aggregator and to other honest

clients. A client can lie in its response to distort the aggregate result; however, this

distortion is limited by A set by the publisher. By keeping a record of client IP addresses,

the publisher can also ensure that a client sends only one response for a query.

By sending fake nonce reports without the corresponding nonces, a malicious client

can incriminate a publisher, and cause the aggregator to manually check this publisher. A

client may also collude with a malicious publisher and generate nonce reports to help the

publisher maintain the right proportion of audits to answers, either in an isolation attack,

or in generation of fake answers to falsify results. By controlling the blind signature

assignment to clients, the aggregator can limit this behavior, and force the publisher to

get a bigger botnet, increasing chances of detection.

3.9 Implementation & Evaluation

3.9.1 Implementation

We implemented the client as a Firefox add-on. Our client keeps user information in a

local database, looks for queries at a well-known URL (e.g., publishersite.com/queries/),

and returns an encrypted response. The client is about 1000 lines of JavaScript code,

excluding the 3000 lines of code for cryptography libraries for RSA.

The publisher software consists of a simple server-side script that stores the en-

crypted responses at the publisher’s website, and a plugin for the opensource web

75

analytics software Piwik [41]. Piwik already allows publishers to record various infor-

mation about visitors, such as their browsers, operating systems and page views as well

as the frequency of returning visitors. Our plugin extends Piwik’s user interface to allow

the publisher to view the queries, number of answers and results as well as enables the

addition of the noise and forwarding of answers. In total, the publisher software is about

450 lines of PHP code.

The data aggregator software is a simple program that enables the publisher to up-

load the encrypted answers. The aggregator then decrypts and aggregates the answers,

adds noise and returns the signed results to the publisher. Our implementation is about

275 lines of Java and PHP code.

3.9.2 Example Scenario

We analyze the computational and bandwidth overhead we impose on the components

via some micro benchmarks. Lacking information about current aggregators’ infrastruc-

ture makes a comparison difficult. Nevertheless, to analyze our system’s overhead, we

use the following scenario. Each week, a publisher poses queries shown in Table 3.2

to 50K clients. The first eight queries collect the same information current aggregators

provide to publishers. The last three are additional queries our system enables the pub-

lisher to pose that are not available in today’s systems: a 10-bucket histogram of the total

number of pages visited by users across all sites, a 3-bucket histogram of visit frequency

to each of 1000 websites selected by the publisher, and how many users use each of the

top 5 search engines. We assume the aggregator uses a 2048-bit key.

76

Table 3.2: Queries and associated parameters. The buckets include our two well-known
bucket IDs.

Property # buckets A o
Age 7 + 2 1 66
Gender 2 + 2 1 66
Income 6 + 2 1 66
Education 5 + 2 1 66
Has children? 2 + 2 1 66
Location 5000 + 2 1 66
Ethnicity 5 + 2 1 66
Other sites visited 3000 + 2 10 751
Total # pages visited 10 + 2 1 66
Visit frequency (1000 × 3) + 2 10 751
Search engines used 5 + 2 3 211

Table 3.3: Per week bandwidth usage of the publisher and the data aggregator.
Publisher Data Aggregator

Collecting answers 0.37GB -
Forwarding noise answers 1.20GB 1.20GB
Forwarding all answers 1.57GB 1.57GB

3.9.2.1 Computational Overhead

To measure the computational overhead, we ran our client on a laptop running Mac OS

X 10.6.8 on an Intel Core 2 Duo 2.66 GHz as well as on a smartphone running Android

2.3.5 with a 1 GHz processor. Our JavaScript client can achieve about 380, 20, and 16

encryptions per second on Google Chrome, Firefox, and on the smartphone, respectively.

Note that JavaScript can be slower than native code.

We ran the publisher and the aggregator software on a machine with 2GB of memory

running Linux 2.6.38 kernel on an Intel Xeon two cores 2.4GHz. The publisher software

can generate and encrypt around 7980 answers per second. In our scenario, the expected

total number of additional answers (i.e., b × o) for all 11 queries is around 4.9M, taking

the publisher less than 11 minutes per week to generate.

The data aggregator software can decrypt and aggregate about 270 messages per

second. In our scenario, the aggregation takes about 3.6 hours per week for the first 8

77

Table 3.4: Number of clients having used search engines on a given day in our deploy-
ment. Actual/Publisher/Data Aggregator

Day Google Yahoo Bing None/Other
01/18 72/73/73 20/20/19 1/-1/10 44/42/49
01/19 63/57/59 20/21/20 2/4/2 29/29/29
01/20 54/57/52 17/18/17 0/-1/-3 29/30/30
01/21 59/62/59 16/15/15 0/5/4 30/29/34

queries whose aggregate information current aggregators provide with tracking. The

remaining three queries whose aggregate information is only available through our

system take about 3.6 hours per week. Most of this overhead is due to the additional

answers used as noise.

Note that all these numbers are obtained using a single CPU for the encryption and

decryption operations. These operations can be easily executed in parallel.

3.9.2.2 Bandwidth Overhead

The compressed size of the biggest query (i.e., 5002 buckets) is about 35KB. In compari-

son, nytimes.com’s homepage is about 500KB, excluding advertisements. Furthermore,

buckets may not change very often, and can be cached.

The client’s bandwidth overhead is in the order of a few kilobytes for sending

responses. In our example, a client would consume about 8KB/week for all 11 queries.

Table 3.3 shows the publisher’s and the data aggregator’s total bandwidth consumption

per week. Most bandwidth consumption is related to the noise answers; however,

the overhead is still acceptable: distributing nytimes.com’s homepage to the 50K user

sample just once would consume about 23.8GB whereas the collection of client answers

and forwarding them with noise answers consumes about 1.57GB.

78

3.9.3 Deployment

To test our system’s feasibility, we deployed our client via our friends and mturk.com for

15 days with 236 unique clients. We report on their browsing activities. On average, there

were 118 active clients daily. Each day, we queried clients about how many pages they

browsed, which sites they visited, their visit frequency to these sites, and which search

engines they used. We used 3K most popular sites from Alexa and set εP = εDA = 0.5.

Note that our goal was to gain experience rather than gather meaningful data.

The clients in our deployment were fairly active; almost half of them having visited

at least 100 pages. Major sites, such as google.com, youtube.com and facebook.com,

were (as expected) reported more than many other sites. We also gathered some data

on the usage frequency of these sites. Many users have visited google.co.in much more

frequently than facebook.com or youtube.com.

Table 3.4 shows the number of clients having used a search engine. One can see that

the noisy counts of the users do not deviate much from the actual values, meaning that

the relative error is not very significant (e.g., Google or Yahoo values). On the other hand,

for low actual counts, the noise can dominate the results the aggregator and publisher

obtain (e.g., Bing values). Our client covered only three search engines and might have

missed searches on other sites with search functionality (e.g., Wikipedia).

Figure 3.5 shows the probability of generating a given noise value with the given

epsilon values. We generated 1M noise values with each given ε value, counted the

number of occurrences of each noise value and computed the probability of a noise

value being generated. As one can see, the lower the ε value, the wider the range of the

noise values. In other words, lower ε values increase the amount of noise added, which

in turn gives more privacy.

79

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-30 -20 -10 0 10 20 30

P
ro

b
a
b
il
it

y

Noise value

epsilon = 0.5
epsilon = 0.75

epsilon = 1.0

Figure 3.5: Probability density function of Laplace noise values with given ε values.

3.10 Conclusion & Future Work

We presented what is to our knowledge the first system for collecting accurate, extended

web analytics without tracking users. Our system directly queries such data, while

protecting user privacy by providing them with anonymity and unlinkability via the

addition of Laplace noise. Our system utilizes the already-existing publisher as the

anonymizing proxy, avoiding to require a new organizational component. It may

be possible to apply our technique to other analytics problems, such as application

analytics (e.g., mobile) and surveys about sensitive topics (e.g., elections, drug use).

These scenarios, however, present additional constraints and challenges (e.g., developers

without a website). We plan to examine them in more detail.

We envision that our system would be used in conjunction with first-party analytics

80

software tools such as Piwik. These first-party tools can already provide the publishers

with information about visitors on their sites (e.g., page views, browsers, operating

systems, plugins, frequency of returning visitors). However, such systems do not provide

important but potentially sensitive analytics information such as user demographics.

Our system is designed to address this shortcoming by providing users with anonymity

and unlinkability during the collection of this information. As a result, it complements

the first-party analytics tools and provides the publishers with user demographics

without having to track the users across the web.

While our design avoids the need for a new HbC organizational component (e.g., a

proxy), it does so at the cost of certain new threats (e.g., publisher dropping responses)

and additional mechanisms to make these threats more difficult. Even with an HbC

proxy instead of a malicious publisher, however, the threat of isolation attacks through

SQL or bucket manipulations remains. One avenue of future work is to explore new

designs addressing these issues while maintaining the scalability properties of the

current system, and to understand the trade-off points better.

One approach to mitigating the isolation attacks through SQL or buckets might be to

simply withhold results for buckets with low values [83]. Another approach might be to

have clients simply not answer repeat queries; however, this approach clearly results

in a utility loss that needs to be better understood. Malicious publishers may also try

to bypass such a mechanism via small variations in queries, essentially querying the

same information with slightly different queries. Potential defenses may borrow ideas

from information flow, each client tracking which piece of information it has exposed

previously [87, 133, 145]. Other sophisticated approaches applied in centralized settings

may help the aggregator and the publisher achieve better accuracy [85,118]. One avenue

of future work is to understand whether we can extend their usability to our distributed

setting.

81

An obvious limitation of our system is that the potential answer values (i.e., buckets)

need to be enumerated and pre-defined before the publisher queries are distributed to

clients, such that the clients can pick the most appropriate answer values after executing

the queries. For queries about user demographics (e.g., age, gender, education level),

this enumeration is not very difficult. On the other hand, for other queries (e.g., websites

visited, search phrases, products viewed), it can become difficult. Other systems utilizing

the same principle of ‘queries with potential answer values’ [97, 98] also suffer from this

limitation. We address this limitation in the next chapter.

82

Chapter 4

Privacy-preserving String Discovery

In this chapter, we propose a system that enables the publishers to discover previously

unknown string values that are present in client databases, but are difficult to enumerate.

The system we presented in Chapter 3 as well as several others [97, 98] are effective in

eliminating third-party tracking while still allowing publishers to query for extended

analytics data. However, the queries need to have a list of pre-defined answer values,

such that the client software can pick the most appropriate answer after executing a

query. For many queries (e.g., visited websites, search phrases), this task of enumerating

potential answer values can be difficult or impossible. The system we describe in this

chapter addresses this shortcoming and complements the above systems. We describe

our system’s design, analyze its privacy properties and evaluate its feasibility using

real-world data. A preliminary version of this work, including the design and evaluation,

was published as a technical report at the Max Planck Institute for Software Systems [80].

The formal analysis of this work was also published as a separate technical report at the

Max Planck Institute for Software Systems [79].

This chapter is organized as follows. The next section motivates the need for a

privacy-preserving string discovery system for web and mobile analytics. Section 4.2

83

presents the challenges we face in designing such a system and our contributions to

overcome these challenges. Section 4.3 introduces our definitions and the components

in our system. In Section 4.4, we present our privacy and functionality goals. We list

our assumptions in Section 4.5. An overview of our system and the building blocks we

use are described in Sections 4.6 and 4.7, respectively. We present our system’s design

details, optimizations and duplicate detection mechanism in Sections 4.8, 4.9 and 4.10,

respectively. A formal model and analysis of our system is given in Section 4.11. Section

4.12 describes our evaluation with real-world data. We conclude in Section 4.13.

4.1 Introduction

While statistics about user demographics (e.g., age, gender, income) are important, a

new class of statistics is emerging: arbitrary text values or strings. Imagine a website

publisher who wants to learn which (previously unknown) search phrases (e.g., ‘pizza

nearby’) are used by how many of its visitors, or the developer of a photo application

who wants to learn about the free-text tag values its users assign to their photos (e.g.,

‘dad and the cats’). Other examples include sites visited, installed applications and

names of products viewed.

Some systems [83,90] try to tackle this problem via general-purpose secure multiparty

computation (SMC) protocols [90], or expensive cryptographic operations [83], such as

oblivious transfers (OT) [141]. Although eliminating potential privacy concerns about

fully trusting a central entity such as a data aggregator, these operations put a significant

load on the clients, whose resources may be limited in large-scale, distributed environ-

ments such as the web. In fact, users increasingly access the web via mobile devices

with limited capabilities compared to personal computers [71–73]. Not supporting such

clients will hinder the use of these systems for privacy-preserving analytics on the web

84

and mobile settings. Furthermore, the main goal of the above systems is to aggregate and

correlate network events among big organizations (e.g., ASes). This specialization limits

the length of the strings these systems can handle due to the underlying cryptographic

primitives. For instance, Sepia [90] and Applebaum et al. [83] assume a string length of

32 bits (i.e., the length of an IPv4 address). For longer strings as in our examples, these

systems would require substantial changes.

4.1.1 Background: Privacy-preserving Analytics Systems

Our system described in Chapter 3 as well as other recent proposals for privacy-

preserving analytics for web and mobile environments avoid the trade-off between

privacy and scalability: With the help of a client software, they store user data at users’

devices and release it in a protected fashion. These systems utilize less sophisticated but

faster crypto operations than SMC or OT and can support a variety of client devices.

Here, we describe the most relevant ones of these systems. We then explain their com-

mon limitation and how our privacy-preserving discovery system complements these

systems.

πBox. πBox [128] uses a trusted platform to restrict the interface for obtaining statistics

from a mobile application: Application developers define a set of counter names. The

platform enforces how much and how often a mobile application instance (i.e., client)

can update these counters. The trusted platform also adds noise to counter values

before reporting them to the developers. The system assumes that the counter names

are well-known and pre-defined.

Hardt et al.’s system. Hardt et al. [117] propose a system to personalize mobile ad-

vertisements in a privacy-preserving way. To collect statistics, Hardt et al. use two

honest-but-curious servers. The clients locally update a counter value for advertisement

impressions (or clicks) and add noise to the values before sending the values for aggre-

85

gation. The servers then aggregate the counter values. Again, the system assumes that

the counter names are pre-defined.

PDDP. Chen et al. proposed a proxy-based system (PDDP) for querying user data. Simi-

lar to our system described in Chapter 3, user data is kept on user devices with the help

of a client software. A separate entity, an honest-but-curious proxy, distributes queries

from analysts to clients and collects responses that are encrypted by the aggregator’s

key. Chen et al. utilize a homomorphic encryption scheme, which allows the proxy to

add noise to the responses blindly (i.e., it does not know how much noise is added). The

queries, however, are distributed to clients with a list of potential answer values (i.e.,

buckets) like our system in Chapter 3.

SplitX. After our non-tracking web analytics system described in Chapter 3, a new

system, SplitX, was developed in collaboration with others [97]; thus, its detailed archi-

tecture is not included in this thesis. SplitX utilizes the same idea of a client keeping user

data on the user device and querying it as PDDP [98] and our non-tracking web analytics

system. The biggest difference is that SplitX utilizes a more efficient encryption scheme

instead of public key cryptography: XOR-encryption. After receiving the queries from

the aggregator, the clients execute them over their local data and encrypt their answers

with a fresh, randomly generated key. Both the XOR-encrypted answer and the key are

then sent for aggregation to two non-colluding proxies, each proxy receiving one value

(see details in Section 4.7.1). The proxies manipulate the XOR-encrypted answers to add

differentially-private noise and forward the answers to the aggregator. The aggregator

then simply decrypts and counts the answers.

The XOR-encryption improves the scalability of the entire system, including the

aggregator. Although the addition of proxies may hinder the adoption of the system, it

can also be considered a second improvement: besides contributing to the scalability,

independently-run proxies also help the system to be more general. As a result, the

86

system can be utilized not just for the web, but also for mobile applications. However,

the queries still need to have a list of pre-defined answer values attached, like PDDP

and our non-tracking web analytics system.

Common limitation. These systems are effective at eliminating third-party tracking

while still providing useful statistics to analysts (i.e., web publishers, application de-

velopers). However, there is a common limitation in all of them: they require a list of

pre-defined string values that are relevant to the user data in question. These string

values represent the counter names in πBox [128] and in Hardt et al.’s system [117],

such that the client software can update the correct counter value when necessary. In

PDDP [98] and SplitX [97] as well as in our system described in the previous chapter,

these string values correspond to the potential answer values (i.e., buckets) that accom-

pany the queries when they are distributed to the clients, such that the clients can pick

the most appropriate answer value after executing the queries.

Unfortunately, for many analytics scenarios (e.g., visited websites, search phrases,

photo tags), this task of enumerating potential string values can be difficult or impossible.

As a result, the applicability of these systems will be limited. The goal of the system

presented in this chapter is to address this limitation and complement these systems.

While we utilize a similar architecture like SplitX, our system does not require pre-

defined string values for its operation.

4.2 Contributions

Our system described in Chapter 3 was designed specifically for web analytics purposes

and used only existing entities. Other systems such as PDDP or SplitX, however, use

independent proxies. These proxies make them more general, such that other analysts,

such as mobile application developers, can also use the system.

87

In this chapter, we present the design and evaluation of a system that allows these

analysts (e.g., web publishers, application developers) to discover previously unknown

string values that are present in client databases, but are difficult to enumerate. The

string values can be of arbitrary size without requiring any system or protocol changes.

Similar to our system in Chapter 3 as well as previous approaches [97, 98], the user

data in our system resides at each user’s own device running a client program. The client

periodically participates in string discovery procedures by submitting its encrypted

strings for aggregation. These strings, while still encrypted, are then counted by the

entity providing the discovery service (i.e., the aggregator) and the two proxies. Strings

with a (noisy) count above a discovery threshold t are then decrypted and provided to

the analysts.

The aggregator and the proxies follow the protocol and do not collude with each other

while running their operation. In this regard, they can be considered honest-but-curious.

However, in our system, we allow these server components to run fake clients, because

such actions may not be easily detected. We name this stronger adversary model as

‘honest-but-curious with Sybils’ (HbCwS). Our system has mechanisms to raise the bar

for such adversaries and make their attempts at violating user privacy difficult.

The first challenge we face in designing such a system is to support a diverse set of

client devices present in large-scale distributed environments like the web. To support

even the client devices with limited computation and bandwidth resources, we employ

a low-cost form of encryption (XOR), similar to SplitX [97]. Unlike SplitX, however, we

do not rely on pre-defined string values.

To decide if a string value should be discovered, we need to count the number of

clients with that value. The key challenge here is to count the clients without revealing

their strings. In other words, we need to count the instances of a string value while the

strings are still XOR-encrypted. To achieve this goal, we design a blind comparison

88

method to distinguish encrypted strings, and count them without learning their values.

We again avoid expensive operations at the clients and servers using low-cost XOR and

hash operations.

Although this technique forces us to use pairwise comparisons resulting in O(n2)

complexity, where n is the number of encrypted strings, our system utilizes two op-

timization heuristics to lower this cost in practice without sacrificing privacy. These

optimizations take advantage of the assumed properties of the environment: the string

distributions are likely to follow a power law (i.e., a couple of string values dominate n)

and the number of possible string values is big.

Another challenge is to preserve the privacy of honest clients in the presence of

Sybil clients. Such clients can be operated by an adversary, including the aggregator

and the proxies, to artificially inflate string counts without being detected. As a result,

low-cost options, such as clients sharing a secret with one server component to obfuscate

their strings while another server component counts obfuscated strings [99], cannot be

employed: the second component can learn the secret using fake clients and deduce

the existence of clients with rare strings by pre-computing obfuscated values. Our

design incorporates a noisy threshold technique to increase the difficulty of launching

such attempts with Sybil clients on violating privacy.

We also need to prevent clients from manipulating encrypted string counts arbitrarily

by sending the same string multiple times. Such malicious clients may want to reduce

the utility of the results or act as Sybil clients to violate the privacy of honest clients. An

environment such as the web contains millions of clients, which cannot be generally

trusted to provide correct data and may have limited resources so that more sophisticated

techniques such as zero-knowledge proofs [114] cannot be employed. As a result,

effectively addressing the issue of manipulated counts becomes critical to the benefits of

the analytics data. We describe the design of a duplicate detection mechanism that deals

89

with this issue without increasing the computational and bandwidth load on honest

clients.

To increase our confidence in our system’s privacy properties, we formally model

and analyze many aspects of our system using ProVerif [48]. In the situations where

ProVerif cannot be used, we informally reason about our system’s privacy properties. We

demonstrate our system’s feasibility using real-world datasets: website popularity from

Quantcast [51] and search phrases from a large search engine. Our system causes several

orders of magnitude less client computation overhead and reduces server computation

overhead by at least two times compared to the closest system [83].

4.3 Definitions & Components

Before we describe our goals and assumptions, we define the following terms: A string is

a text value present at the user’s device. Some examples are ‘google.com’, ‘pizza nearby’

and ‘spring in Paris’. A string type is the class of the string. The string ‘google.com’

may have type ‘visited websites’. Similarly, ‘pizza nearby’ may be a ‘search phrase’

and ‘spring in Paris’ may be a ‘photo tag’. A generic string type may be useful to

many analysts (e.g., ‘visited websites’, ‘search phrases’). An analyst-specific string type

may be useful to one or a few analysts (e.g., ‘photo tags in Instagram’). The discovery

threshold t is the value that the noisy count of the number of clients with a given string

must pass for the string value to be discovered.

There are three types of components in our system: client, aggregator, and proxies.

Clients and the aggregator already exist in today’s aggregation infrastructure. Proxies

have been widely proposed for privacy purposes [83, 97, 98, 116, 117], and we also adopt

this approach.

The client is a piece of software that stores user data (i.e., strings, string types) locally,

90

similar to our system described in Chapter 3 and other systems [97, 98]. The client

participates in discovery procedures by sending its encrypted strings. Note that the

browser or mobile OS already sees user data.

The aggregator provides the string discovery service, which reports previously un-

known strings and their noisy counts. Analysts may express their interest in learning

strings of a string type. For example, an analyst may be interested in learning the search

phrases users are using or websites users are visiting. These string values can then

be used by the analysts to query distributed user data with other systems [97, 98] as

well as with our system described in Chapter 3. The aggregator handles all interactions

with the analysts, and controls access to the discovered strings (e.g., shares strings of an

analyst-specific type only with that analyst).

The proxies provide clients with network anonymity, and enable the aggregation of

encrypted user data and discovery of strings. They also help the aggregator limit the

effect of malicious clients can have on string counts.

4.4 Goals

4.4.1 Privacy Goals

Our main privacy goal is to only learn string values that are reported by a sufficient

number of clients, such that the count passes a threshold t supplied by the analyst while

the aggregator enforces a minimum value for t. The discovery threshold t is defined as

the value that the noisy count of the number of clients with a given string must pass, so

that .

Our reasoning for this goal is two-fold: From a client’s perspective, rare strings

shared by few clients may leak privacy, and thus, should not be discovered. For instance,

91

the tag ‘Alec Finmeier getting drunk’ is rarer than ‘my birthday’, and can leak a client’s

identity. From an analyst’s perspective, the discovered strings may be more useful if

shared by a relatively large client population. In our photo app example, the analyst

(i.e., the developer) may only be interested in tags used by many clients. Thus, our goal

is to count client strings without revealing them: any string value with fewer clients than a

discovery threshold (t) should not be revealed to any component with high probability.

A fixed threshold, however, is not enough: to expose a rare string, an adversary (e.g.,

a component) can artificially inflate the count by creating t-1 Sybil clients. To prevent

such attempts, our system should operate with noisy counts, and ensure that a string’s

noise-free count cannot be learned by a single component. In other words, the total noise

value should be unknown to a single component.1

Additionally, the participation of the clients should be anonymous, such that given a

string value or type, no component should be able to associate it with a client. It should

also be unlinkable to prevent anonymous profiling of clients, such that given two string

values or types, no component should be able to tell if they are from the same client. In

addition, a discovered string should not reveal any information about any other string.

For example, guessing a common string value should not leak any information about

any other string.

Privacy Non-goals. Our non-tracking analytics system as well as many previous privacy-

preserving analytics systems [97, 98, 117, 128] use differential privacy (DP) [102, 103]

mechanisms to add noise to results. These systems provide users with some levels of

formal DP guarantees. Unfortunately, using DP in environments like the web requires

some relaxation for practicality [81, 97, 98]: there is no hard limit on how many times a

client participates in the system (i.e., no budget). Like these systems, we do not enforce a

budget, but use DP mechanisms (i.e., Laplace noise) to add noise to string counts. While

1Absent collusion among components (see Section 4.5 for details).

92

the clients in our system still record the ε values to track the theoretical privacy loss, we

do not aim to provide users with DP guarantees. Although we wish to provide such

formal guarantees, we think our goals and assumptions about the environment (i.e., the

string distributions are likely to follow power law and the number of possible string

values is big) align well for privacy-preserving discovery of unknown strings in practice.

4.4.2 Functionality Goals

Our main functionality goal is to help analysts by discovering unknown strings and

reporting their noisy counts. Our system should scale well, both on the client and server

sides. The client operations should not incur much overhead to support even the most

resource-constrained devices (e.g., smartphones). To scale to potentially millions of

clients with hundreds of millions of strings, server operations should also be fast. Finally,

our system should limit a malicious client’s effect on counts: a manipulated count can

reduce the utility analysts obtain from the discovery and cause the discovery threshold

to be ineffective.

4.5 Assumptions

In this section, we describe our assumptions for our system. Next, we describe similar-

ities and differences between our system and SplitX [97], a high-performance private

analytics system. Afterwards, we summarize our assumptions about the components in

our system. These assumptions are not much different from SplitX. Finally, we list the

assumptions about the string values that we want to discover.

93

4.5.1 SplitX

Our system is complementary to SplitX, but operates in a similar setting. In our design,

we take advantage of the proxies that were introduced by SplitX and are required for its

operation. We utilize the same XOR-encryption technique to support the client devices

even with limited computation and bandwidth resources. However, unlike SplitX, our

system does not rely on pre-defined string values for its operation and complements it

by discovering unknown strings as potential answer values.

4.5.2 Client

The client typically runs on a user device, but may also run on another trusted platform.

As we did previously and similar to previous systems [97, 98], we assume that the user

trusts the client to protect the data it stores and regarding its operation, just as users

trust their browsers for certificate handling and TLS connections.2 A client can, however,

be malicious and send the same string multiple times to try skewing its count.

4.5.3 Aggregator & Proxies

We assume that the proxies and the aggregator are honest-but-curious with Sybils

(HbCwS): they follow the protocol, and do not collude with each other. However, each

component may run fake clients to try to link/deanonymize other client strings.

Although our model is weaker than a more general model (i.e., arbitrarily malicious

aggregator and proxies), we think that it reflects the reality on the Internet: The aggrega-

tor operates a business by providing string discovery service for analysts. The proxies can

be operated by independent companies and/or privacy watchdogs. All of these entities

would put their non-collusion statement in their privacy policies, making them legally

2We do not protect against malware infections on user devices.

94

liable. Moreover, any entity not following the protocol would risk losing reputation and

customers. Previous systems make similar assumptions [81, 83, 97, 98, 101, 116, 117].

Finally, we assume the aggregator and proxies are not impersonated, and all end-to-

end connections use TLS (i.e., no eavesdropping and no in-flight modifications).

4.5.4 String Values

We make the following two assumptions about the string values present at the client

databases. First, we assume that the number of possible string values is big, such that an

exhaustive enumeration of these values is very difficult. In fact, the main purpose of

our discovery system is to handle analytics scenarios in which such an enumeration is

difficult or impossible.

Second, we assume that the string distributions follow power law like many natural

phenomena. As a result, we assume that a relatively small number of different string

values will be present at a large portion of clients. As we show in Section 4.12.2, our

real-world data about website popularity and search phrases support this assumption.

4.6 System Overview

Figure 4.1 shows an overview of our system. The aggregator periodically runs string

discovery procedures. Clients periodically poll the aggregator with their string types

(step 1 in Figure 4.1). These polls are XOR-encrypted and sent via the proxies to provide

clients with anonymity and unlinkability: The aggregator cannot associate clients with

string types, and cannot tell if any two requests are from the same client. Meanwhile,

the encryption prevents proxies from learning clients’ string types.

After receiving a poll request for a string type, the aggregator sends the associated

95

Proxies Aggregator
Clients

1. Poll string types

2. String discovery

parameters

3. Encrypted

strings

4. Count distinct

strings & Add noise

& Filter

& Decrypt

Figure 4.1: Overview of our system’s operation.

(XOR-encrypted) string discovery parameters to the client via the proxies (step 2).

The parameters include the ε value for Laplace noise and the discovery epoch that is

used to synchronize the start and end times of discovery procedures for many string

types. This synchronization serves as a checkpoint for the duplicate detection to limit

malicious clients and helps the aggregator to group multiple string types together during

aggregation, such that an adversary cannot deduce a client’s string type just from the

participation.

After getting the parameters, the client retrieves the strings belonging to the string

type from its local database. The client then XOR-encrypts each distinct string with a

separate, one-time key before sending it for aggregation (step 3).

During the aggregation step, our system utilizes a low-cost comparison method

that only reveals if any two XOR-encrypted strings are equal. With this method, our

system counts distinct strings, adds noise to their counts, and applies the discovery

threshold—all without learning the actual string values. Strings whose noisy counts

96

pass the threshold are then decrypted (step 4), and the aggregator reports them with

their noisy counts to the analysts.

We employ two proxies, such that each proxy concurrently compares and counts

the distinct strings of roughly half the clients, and independently adds noise to their

counts. Consequently, the total noise added to a string count is unknown to any single

component.

If implemented naı̈vely, the above protocol requires O(n2) comparisons to count n

client strings. Each individual comparison is low-cost (i.e., XOR and hash), but the

total can be prohibitive. We use two optimizations to lower this cost without violating

our privacy goals in practice. Our optimizations exploit the properties of the assumed

environment: First, the number of possible string values is big, such that an exhaustive

enumeration of these values is very difficult. Second, the string distributions are likely

to follow a power law like many natural phenomena.

With these optimizations, our system reduces the server computation overhead

compared to the closest system [83], but increases bandwidth usage between the server

components. Although the load for servers can be distributed, clients may be running

on mobile, resource-constrained devices and become the bottleneck. With the increasing

prevalence of these devices, supporting them becomes vital for scalability. We achieve

this goal using low-cost primitives, which provide several orders of magnitude less

computation overhead at the clients as well as support limited client bandwidth. By

contrast, server bandwidth is less critical. For instance, data outgoing from EC2 is about

$0.09/GB up to 40TB, and even free when incoming [5]. Our system essentially trades

off cheap server bandwidth for low client computation and bandwidth overhead.

A malicious client can try to exploit our system’s anonymity and unlinkability prop-

erties to skew a string’s count by sending it multiple times. Our system checks for such

duplicates, potentially reported by any client, before counting strings. We utilize the

97

Source Dest.

sid, X

sid, R

sid, X

sid, R
X=XOR(S,R) S=XOR(X,R)

Relay2

Relay1

Figure 4.2: Splitting and joining. S is split to X and R. They are sent with the same sid
via two relays.

same low-cost, blind comparison method mentioned above, and detect malicious clients

without violating the privacy of honest clients.

4.7 Building Blocks

Here, we describe the low-cost XOR-encryption, our blind comparison method to deter-

mine the equality of two XOR-encrypted strings without revealing their values, and our

noisy threshold mechanism to deal with Sybil clients. Section 4.8 presents our design

details.

4.7.1 XOR-Encryption: Split & Join

Our system uses XOR as its crypto primitive like SplitX [97]. Splitting is equivalent to

encryption, and joining is equivalent to decryption. These operations enable a source

to anonymously send a string to a destination via two different, non-colluding relays.

The relays do not learn the string value due to the encryption. Meanwhile, the crypto

operations for the source and destination are low-cost (Figure 4.2).

To send a string S to a destination, the source splits S to obtain two split messages, X

and R. Let L be the length of S . The source first generates a random, one-time key R of

length L using a secure, one-time seed and a secure hash function H (e.g., SHA-2). Let hi

and || denote the output of the hash operation at the ith iteration and the concatenation

98

operator, respectively. The source starts hashing the seed and then applies the hash

function to the output of the previous iteration until the desired length L is reached:

h1 = H(seed)

h2 = H(h1)

h3 = H(h2)

...

R = h1||h2||h3||...

The source then encrypts S with R:

X = S ⊕ R

The source also generates a split identifier sid, a large random number (e.g., 128 bits)

to ensure the two split messages will be uniquely paired by the destination with high

probability. The source then sends X and R to the relays, who forward them to the

destination:

S ource→ Relay1 → Destination : sid, X

S ource→ Relay2 → Destination : sid,R

Borrowing notation from [97], we denote the split message pair {X,R} as S (underlined

S), and write:

S ource
Relay1
−−−−−→
Relay2

Destination : S

99

The destination joins the split messages to obtain S :

S = X ⊕ R

For efficiency, the source can send the 〈seed, L〉 tuple instead of R, and let the destination

generate R.

4.7.2 Blind Comparison via pairwise-XOR and hash (PXH)

To count distinct string values without revealing them, our system uses a blind compari-

son method to determine the equality of any two XOR-encrypted strings. Consider two

strings S i and S j with split message pairs {Xi,Ri} and {X j,R j}, and split identifiers sidi

and sid j, respectively. Recall that the split messages are held by two relays (i.e., Xi and

X j by Relay1, and Ri and R j by Relay2). Let H be a secure hash function (e.g., SHA-2).

For each relay, we define the pairwise-XOR hash (PXH) operation as:

PXHRelay1(sidi, sid j) = H(Xi ⊕ X j)

PXHRelay2(sidi, sid j) = H(Ri ⊕ R j)

Recall that Xi = S i ⊕ Ri and X j = S j ⊕ R j. Therefore:

PXHRelay1(sidi, sid j) = H((S i ⊕ Ri) ⊕ (S j ⊕ R j))

PXHRelay2(sidi, sid j) = H(Ri ⊕ R j)

If S i = S j, then PXHRelay1 = PXHRelay2 = H(Ri⊕R j). By comparing PXHRelay1 and PXHRelay2 ,

our system can blindly determine if the original strings S i and S j are equal. Compared

to just using the pairwise-XOR value, the secure hash ensures that one string cannot be

reverse-engineered, even when strings are unequal and the other string is easily guessed

100

(e.g., a common string).

Note that the X values of different strings must be held by the same relay (i.e., either

Relay1 or Relay2). Otherwise, equal strings will not cancel out when the PXH operation

is applied.

4.7.3 Noisy Threshold

Our system only decrypts strings whose noisy counts pass the discovery threshold t.

We use Laplace noise, which is also used by differential privacy [102, 103, 105]. Adding

Laplace noise to the output of a computation achieves the property that the probability

of the computation producing a given output is almost independent of the existence of

any individual record in the dataset the computation uses. In our setting, this property

suggests the following: If there is a string with t-1 Sybils, the probability of the string

being discovered (and decrypted) is almost independent of any honest client with that

string value. In other words, whether a real client with that string value exists does not

significantly affect its discovery.

4.8 Design

This section presents our protocol’s details. First, the client receives the string discovery

parameters (Section 4.8.1). Encrypted strings are then collected from the clients (Section

4.8.2). Afterwards, encrypted strings are blindly compared and counted (Section 4.8.3).

Finally, noise is added to the counts (Section 4.8.4).

During these phases, there are three separate roles each component can perform:

relaying, collecting, and comparing (separated by the vertical, dashed lines in Figure

4.3). The aggregator assumes only the collecting role, whereas the proxies assume all

101

Sec. 4.3: Blindly

Counting Strings

C
C

C

A

P1

Relaying Collecting Comparing

Sec. 4.2: Collecting

Encrypted Strings

...

Sync
P2

P2

P1

P2

Figure 4.3: Mirror operation 1 in our privacy-preserving string discovery system. The
vertical, dashed lines separate the three roles. The arrows labeled with section numbers
show the direction of information flow.

three roles (but not on the same data at the same time). Both proxies assume the relaying

role between the clients and the aggregator.

To ensure no single component knows the total noise added to a string count, our

system employs two proxies: each proxy compares and counts encrypted strings of about

half the clients, and independently adds noise, which we refer as “mirror operations”.

For clarity, we present mirror operation 1 where Proxy2 makes the comparison (Figure

4.3). We then describe how mirror operations enable us to obliviously add noise to counts

(Section 4.8.4).

4.8.1 Initializing String Discovery

The client periodically polls the aggregator and receives string discovery parameters (S DP)

for string types (S T) present in its local database (Figure 4.4). The polling mechanism

102

C A

P1

P2

ST

SDP

Figure 4.4: Initializing string discovery.

C

sid, X

P2
sid, X, pIP

P1

P2

P1

sid || R || ST

A

Figure 4.5: Collecting encrypted strings.

is similar to SplitX [97]. For each S T , the client creates a separate request, splits it, and

sends it to the aggregator using the proxies as relays:

C
P1
−−→
P2

A : S T

The aggregator splits the string discovery parameters associated with S T and sends

them back via the proxies:

A
P1
−−→
P2

C : S DP

103

A P2P1
1. CL1,
CL2, · · ·

2. PXHL′

1
,

2. PXHL′

1
,

PXHL′

2
, · · ·

PXHL′

2
, · · ·,

ǫ1, ǫ2, · · ·
3. Compare,
count, add
noise & filter

4. (sid′
1
, c1),

(sid′
2
, c2), · · ·

4. (sid′
1
),

(sid′
2
), · · ·5. (X1),

(X1), · · ·

Figure 4.6: Counting and revealing strings.

The client joins the split messages to obtain the S DP, which contains ε and DTEnd. ε

is the privacy parameter to add noise to string counts. DTEnd is the discovery end time

(i.e., when no more strings are accepted). Discovery procedures are run in epochs: their

start and end times are synchronized. A discovery spans only one epoch, but can be

repeated. The aggregator can optionally add a list of hashes of previously discovered

strings, such that clients only send undiscovered strings. If there is no discovery for a

string type in the current epoch, S DP will be empty.

4.8.2 Collecting Encrypted Strings

To track the theoretical privacy loss (i.e., not enforcing the privacy budget), the client

records the ε value from the aggregator. It then retrieves all strings of type S T from its

local database. For each distinct string S , the client creates a split message pair {X,R}

and a split identifier sid. These values will be sent to the collecting components: the

104

aggregator will receive sid, R and S T while Proxy1 will receive sid and X. The aggregator

will use the S T value to group encrypted client strings into comparison lists (Section

4.8.3). In an epoch, the client participates only in one randomly selected mirror operation

(i.e., it uses the same collecting components).

Figure 4.5 shows the collection process. To prevent the aggregator from linking a

client with a particular S T value, the client concatenates, splits, and sends the sid, R and

S T values to the aggregator via both proxies:

C
P1
−−→
P2

A : sid||R||S T (4.1)

The aggregator joins the split messages to obtain the sid, R and S T . To anonymously

send sid and X to Proxy1, the client uses Proxy2 as a relay: Proxy2 assigns each client a

temporary pseudo IP address pIP (i.e., valid only for the current epoch), and forwards sid,

X and pIP to Proxy1:

C → P2 : sid, X (4.2)

P2 → P1 : sid, X, pIP (4.3)

The pIP values mark (encrypted) strings from the same client for duplicate detection

(Section 4.10).

4.8.3 Blindly Comparing & Counting Strings

At this point, each collecting component in Figure 4.3 (Proxy1 and the aggregator)

has one split message of the XOR-encrypted strings and associated sid values. They

exchange sid sets and discard unpaired split messages before proceeding with the blind

comparison and counting.

105

Blind Comparison. As explained in Section 4.7.2, the blind comparison involves the

computation and comparison of pairwise-XOR hash values (PXHP1 and PXHA) for each

possible 〈sidi, sid j〉 tuple. The strings are not revealed during the comparison; however,

if they are equal, knowledge about one string can be used to infer the other.

Neither collecting component is suited to make the blind comparison, because they

are assumed to operate fake clients sending known strings. These strings can be identi-

fied (e.g., via their sid values), and the comparison result with an unknown string can be

exploited. For this reason, the comparison is performed by Proxy2.

Proxy1 and the aggregator share a random, temporary secret Rs (i.e., valid for one

epoch). They overwrite the sid values as sid′i = H(sidi||Rs), where H is a secure hash

function (e.g., SHA-2),3 and compute the PXH values as:

P1 : PXH′P1
(sid′i , sid′j) = H((Xi ⊕ X j) ⊕ Rs)

A : PXH′A(sid′i , sid′j) = H((Ri ⊕ R j) ⊕ Rs)

This modification of PXH values does not affect the comparison result, but ensures that

Proxy2 cannot reverse-engineer the sid values by using the fixed PXH value of any two

known R or X values sent by its fake clients.

Blind Counting. Figure 4.6 shows the process to count the encrypted strings. The aggre-

gator first groups the sid′ values into comparison lists (CLs). A comparison list consists of

either a generic string type (e.g., ‘websites’), or multiple different analyst-specific string

types (e.g., ‘photo tags’ and ‘health app tags’). This mixing of multiple analyst-specific

string types provides clients with additional privacy properties regarding their string

3Alternatively, they can agree on a shuffled mapping of sid values to location pointers, and use them (lp′i
instead of sid′i).

106

types. Each list is then sent to Proxy1 (step 1):

A→ P1 : CL1, · · · ,CLm

As described above, Proxy1 and the aggregator compute PXH′ values for each possi-

ble 〈sid′i , sid′j〉 tuple in each comparison list CLk, with 〈sid′i , sid′j〉 tuples as identifiers.4 Let

PXHL′P1,k
and PXHL′A,k represent the list of PXH′P1

and PXH′A values for CLk computed

at Proxy1 and the aggregator, respectively. These lists are sent to Proxy2. The aggregator

also sends the εk values (step 2):

P1 → P2 : PXHL′P1,1, · · · , PXHL′P1,m

A→ P2 : PXHL′A,1, · · · , PXHL′A,m, ε1, · · · , εm

For each PXHL′, Proxy2 determines the equality of the encrypted strings for each

tuple by comparing PXH′P1
and PXH′A values, and creates equality lists: if strings with

sid′i and sid′j are equal, they are put in the same list. From each equality list ELi, Proxy2

randomly selects a sid′ value as a representative string, and records it with the count of

equal strings in the list.

Proxy2 then adds Laplace noise to each count using the ε value of the corresponding

PXHL′, and discards the representative sid′ values whose noisy counts are below the

discovery threshold (step 3). Let ci be the noisy count of the representative sid′i of ELi.

Proxy2 sends each sid′i and ci to the aggregator, but only sid′i to Proxy1 (step 4):

P2 → A : {〈sid′1, c1〉, · · · , 〈sid′i , ci〉, · · · , 〈sid′n, cn〉}

P2 → P1 : {sid′1, · · · , sid′i , · · · , sid′n}

4Or they can use the 〈lp′i , lp
′
j〉 tuples as identifiers.

107

Proxy1 then sends the split messages (i.e., X values) of the corresponding strings to the

aggregator (step 5):

P1 → A : {sid′1, X1, · · · , sid′i , Xi, · · · , sid′n, Xn}

The aggregator joins the locally held Ri and matching Xi for each sid′i to obtain the

discovered string values.

4.8.4 Mirror Operation & Oblivious Noise

We described the mirror operation 1 in Figure 4.7, in which Proxy2 performs the com-

parison task. For roughly half the clients, Proxy1 makes the comparison (i.e., mirror

operation 2). Both proxies independently count, add noise to the count, filter strings

lower than the discovery threshold t, and send them to the aggregator.

The mirror operations are mostly concurrent, except for two times requiring inter-

action: First, the duplicate detection (Section 4.10) requires synchronization between

the proxies that relay X values (i.e., Proxy2 in mirror operation 1 and Proxy1 in mirror

operation 2). Second, the comparing proxies send independently discovered strings to

the aggregator at the end of the counting phase (Section 4.8.3).

It is possible that the aggregator receives a particular string value and its count only

from one proxy (e.g., Proxy2). If this count is published, Proxy2 can associate the count

with the string, and subtract the noise it added to get the string’s noise-free count. If the

aggregator adds its own noise and publishes the total, the total count can still indicate

that the threshold was passed at only one proxy (i.e., if the total is less than twice the

threshold). Proxy2 could then use the ranking of the counts it reported, associate them

with the strings (or eliminate most), and obtain the noise-free counts by removing its

noise.

108

C
C

C
C

C P2

P2

A

C

A

P1

P2

P1

Relaying Collecting Comparing

Mirror Operation 2

Mirror Operation 1

...

...

P1

Sync

Duplicate Detection

 (Section 4.10)

P1

P1

Sync

P2

P2

Sync

Figure 4.7: Complete system for privacy-preserving string discovery. The horizontal,
dashed line separates the mirror operations. Components in duplicate detection are
shown within the rectangular shape.

For this reason, the aggregator only publishes a string value if it is received from both

proxies. That means, that the string value has passed the discovery threshold on both

proxies. The aggregator then publishes the sum of both noisy counts (i.e., double-noisy

count). The double-noisy count prevents the proxies from obtaining a string’s noise-free

count: even if a proxy somehow removes its own noise, the count will still contain the

other proxy’s noise.

Note that even the aggregator cannot learn a string value that did not pass the

discovery threshold: if the aggregator received the string value, the string’s noisy count

must have passed the discovery threshold on at least one proxy.

109

4.8.5 Other Details

To prevent timing correlations, the proxies randomly order and delay split messages

before relaying. The string length and the number of strings a client sends are selected

from a well-known list (e.g., 50, 100) and can be parameters in the initialization based

on the string type. Short strings are padded deterministically (e.g., with hash of string)

before splitting. If a client has more strings, it randomly selects which strings to send. If

not, it sends random filler strings with a modified string type (e.g., “tags FS”), which are

filtered by the aggregator. The client prepends the type to the string, distinguishing two

analyst-specific strings even when the actual string values are the same.

4.9 Optimizations

Here, we present ways to reduce the total computation cost of comparisons without

compromising our privacy goals in practice.

4.9.1 Sample-Identify-Count-Filter (SICF)

One heuristic is to use random samples to find strings with large counts and filter them.

The high-level intuition is that, like many natural phenomena, the string distributions

will show power law characteristics, and a few common strings will dominate in the

comparison list. These strings can be identified with a small random sample, and strings

equal to them can be filtered to shorten the list.

Figure 4.8 shows one iteration in mirror operation 1: The collecting components

(Proxy1 and the aggregator) first send the comparison list (CL′) with modified sid values

to the comparing component (Proxy2) (step 1). Proxy2 selects a random sample (S) (step

2), and sends it to Proxy1 and the aggregator (step 3), who compute and send back PXH′

110

values for the strings in S (step 4). Proxy2 then identifies the distinct (encrypted) strings

in S , and selects one representative sid′ value from each of the longest p equality lists in

the sample (i.e., most common p distinct strings) (step 5). These sid′ values are sent to

Proxy1 and the aggregator (step 6), who compute PXH′ values for these p strings with

all other strings in the CL′ and send them to Proxy2 (step 7). Proxy2 counts and stores

sid′ values of all strings equal to each of these p strings (step 8), and sends the entire list

of equal sid′ values to Proxy1 and the aggregator (step 9), who then filter them from the

CL′ (step 10).

This process can continue iteratively until 1) enough strings are discovered, or 2)

Proxy2 does not discover any new strings in step 8. When stopped, most common

strings will have already been discovered. Some strings above the threshold may go

undiscovered, but the probability of this event should decrease with bigger samples.

4.9.2 Short Hashes

Another heuristic is to distinguish strings before collection. The high-level idea is that

the strings deemed different will not need to be pairwise compared. To achieve this task

without compromising privacy, we let the clients map each of their strings into a bucket

(B), using a hash function mapping to a small number of buckets (e.g., SHA-1 (mod 128)).

The clients send each string’s B value with its string type S T to the aggregator, who

compiles the comparison lists with the distinct 〈S T, B〉 tuples: each list will be shorter,

requiring fewer PXH operations in total.

The aggregator starts with one bucket and samples the encrypted strings. After the

sampled strings are pairwise compared, the number of distinct strings will give the

aggregator an idea on how many distinct strings to expect. The sample size can be

increased for confidence. The aggregator then starts a new discovery with the decided

number of buckets, and clients send their strings with their B values. Clients and

111

A P2P1

1. CL′

2. Sample S
3. S

4. PXHL′(S)

5. Identify p

most common
in S

6. sid′
1
,

· · · , sid′
p

7. PXHL′

1
,

· · · , PXHL′

p

8. Count
equal to
p most
common9. sid′

1
,10. Remove

sid′
1
,

sid2′, · · ·
sid2′, · · ·

Figure 4.8: Overview of our SICF heuristic.

112

watchdogs can set a maximum value for the number of buckets allowed (e.g., ≤128).

4.10 Detecting Duplicates

Our system detects malicious clients before counting the encrypted strings. Figure 4.7

shows a rectangular shape around the components involved in this phase. The high-

level idea is to run the blind comparison protocol described in Section 4.8.3, but this

time among all strings from a given client: equal strings will be duplicates, indicating a

malicious client without revealing any strings.

We again describe mirror operation 1 for clarity. Recall that the client uses Proxy2 as

a relay for sending X values to Proxy1 (Figure 4.5). Proxy2 attaches a pseudo IP address

(pIP) for each client IP address. Our protocol leverages these pIP values, and works in

two stages.

Stage 1: The relaying Proxy2 in mirror operation 1 and the relaying Proxy1 in mirror

operation 2 exchange real client IP addresses (left ‘Sync’ in Figure 4.7). If each client

followed the protocol and participated in only one mirror operation in the current

discovery epoch, the intersection of the lists will be empty. If not, the clients with IP

addresses present in both lists might have sent a string multiple times. These clients’

strings are invalidated by sending their pIP values to the respective collecting component

(e.g., Proxy1 in mirror operation 1), who then discards the associated X values.

Stage 2: After the invalidation, the collecting components (Proxy1 and the aggregator)

share another temporary, random secret Rsdd (upper-right ‘Sync’ in Figure 4.7). Using

this secret, they overwrite the sid values (e.g., sid′i = H(sidi||Rsdd)).5

Proxy1 then independently modifies the pIP values and gets a pIP↔ pIP′ mapping

to prevent Proxy2 from linking the strings to the pIP values it assigned while relaying

5Or a different shuffled mapping for location pointers.

113

client strings. For each pIP′, Proxy1 sends the list of sid′ values, sidL′, to Proxy2:

P1 → P2 : pIP′1, sidL′1, ..., pIP′v, sidL′v

The aggregator also independently modifies the actual string types to obtain an

S T ↔ S T ′ mapping. Multiple analyst-specific string types are mixed into one list for

better privacy (i.e., multiple S Ts corresponding to the same S T ′). Analyst-specific

strings can still be compared safely, because the S T is prepended to the string (Section

4.8.5). For each S T ′, the aggregator sends the list of sid′ values to Proxy2:

A→ P2 : S T ′1, sidL′1, ..., S T ′t , sidL′t

Using both pIP′ → sidL′ and S T ′ → sidL′ mappings, Proxy2 divides the sid′ values

into groups. For Proxy1, each group GP1,i corresponds to a unique 〈pIP′, S T ′〉 tuple. For

the aggregator, each group GA,i corresponds to multiple (e.g., 20) pIP′ values with the

same S T ′.

These groups are then sent to Proxy1 and the aggregator:

P2 → P1 : GP1,1,GP1,2, ...,GP1,n

P2 → A : GA,1,GA,2, ...,GA,n

Note that, even though Proxy2 knows which unique tuples correspond to which groups,

these tuple identifiers are not sent.

Proxy1 and the aggregator compute the PXH′ values using Rsdd for every possible

〈sid′i , sid′j〉 tuple in their respective groups, and send them to Proxy2. Proxy2 checks for

equal strings belonging to the same pIP′ value using the pIP′ → sidL′ lists. Recall that

multiple pIP′ values with the same S T ′ value are grouped together for the aggregator.

114

Using the pIP′ → sidL′ lists, Proxy2 can identify the PXH′ values that are redundantly

computed by the aggregator and discard them, without affecting the duplicate detection.

This redundancy ensures that the aggregator cannot anonymously profile a client with

these string values, even if they are selected as representative strings by Proxy2 at the

end of the counting phase (Section 4.8.3), who cannot tell if they are from the same client

or not.

Proxy2 then sends the sid′ values of these equal strings to the aggregator. In the

counting phase, the aggregator independently modifies the PXH′A values involving the

duplicates with a random value rather than Rs, such that the blind comparison of the

duplicates with other strings will yield ‘not equal’ and does not affect any counts.

NATs. Many clients may operate behind the same IP address (e.g., home/business

gateways), making some duplicates legitimate. To decrease the bias caused by removing

these duplicates, some randomly selected duplicates can be included based on the

aggregator’s policy.

4.11 Analysis

In this section, we present an analysis of our system. Our goal is to increase our

confidence in our system’s privacy properties. To this end, we formally modeled our

protocol in applied-pi calculus [74] and verified our model using ProVerif [48]. We state

our model’s limitations and how these limitations might affect our verification results.

For the parts we cannot model, we present an informal analysis and reason about why

our system still achieves its privacy goals.

115

Table 4.1: Process grammar in applied pi calculus.
P,Q := processes
0 null process
P|Q parallel composition
!P replication
new n : t; P name restriction
if M then P else Q conditional
let x = M in P else Q term evaluation
in(M,x:t); P message input
out(M,N); P message output
R(M1, ...,Mk) macro usage

4.11.1 Tools

Before we present the primitives used in our system and their equivalents in our formal

model, we describe the formal tools we use to model our system.

4.11.1.1 Applied Pi Calculus

The pi calculus [134] is a language that is used to formally model distributed systems and

reason about their interactions. The applied pi calculus [74] is an extension of pi calculus

that is used to model and reason about cryptographic protocols. These distributed

systems are modeled as a collection of parallel processes that exchange messages using

channels.

Here, we describe some basics of the language (in conjunction with ProVerif) and how

it is used to model interactions among concurrently running components of a system.

The details of the language and how it is used in ProVerif can be found in the ProVerif

manual [48].

Processes. A process is used to model the logical actions of a component in the system.

The grammar to build processes is given in Table 4.1.

116

type hash.
fun H(bitstring): hash.

Figure 4.9: An example of a constructor without a destructor: one-way hash function.

type key.
fun senc(bitstring, key): bitstring.
reduc forall m: bitstring, k: key; sdec(senc(m,k),k) = m.

Figure 4.10: An example of a constructor with a destructor: symmetric encryption

Messages. Processes interact using messages. A message can be a name, a variable or

the output of a constructor, or a combination (i.e., tuples). A name (e.g., ‘string1’) is used

for atomic data. A variable (e.g., x) can be bound to a name or a message. Equivalence

of two messages can be learned by applying an equation of the form x = y.

Constructors/Destructors. A constructor is a function that can be applied to names,

variables and other messages. The corresponding destructor of a constructor ensures that

a message can only be reversed into its original content (i.e., name, variable, message), if

and only if the correct conditions are present. For example, one can model a secure, one-

way hash function as a constructor without a destructor. Because there is no destructor,

the output of this constructor cannot be reversed (Figure 4.9).

On the other hand, we can model the symmetric encryption senc with a destructor

sdec, such that it will only output m when the key used to decrypt (i.e., k) is the same

key used in the constructor senc (Figure 4.10).

Another way to model certain cryptographic primitives is to use equations. For

example, one can model the symmetric encryption/decryption above as equations that

capture the relationship between the constructors for all variables (Figure 4.11). Equa-

tions are less efficient than destructors, but are necessary to model certain cryptographic

primitives that require algebraic relations between terms. One example is the Diffie-

Hellman key agreement. Details of when to use constructors/destructors or equations

can be found in the ProVerif manual [48].

117

type key.
fun senc(bitstring, key): bitstring.
fun sdec(bitstring, key): bitstring.
equation forall m: bitstring, k: key; sdec(senc(m, k), k) = m.
equation forall m: bitstring, k: key; senc(sdec(m, k), k) = m.

Figure 4.11: An example of a constructor with equations: symmetric encryption

Channels. Messages can be output and input on channels. Channels are asynchronized,

such that the messages sent on a channel can be received out of order. A message m

can be sent on a channel c using out(c,m). Similarly, it can be input from the channel

in(c, r), such that the variable r will be bound to the message received from channel c. If

the message m is a tuple of form (x, y), then the input action can be performed with a

conditional, such that the variable y will be bound to variable z in in(c, (= x2, z)) if and

only if x = x2.

ProVerif. ProVerif [48] is a tool for automated analysis of cryptographic protocols.

Distributed systems modeled in applied pi calculus can be automatically analyzed to

prove secrecy properties of these systems. ProVerif has been widely used in the literature

to analyze properties of various cryptographic protocols (see the ProVerif manual [48]

for a complete list).

ProVerif can perform reachability analysis of properties on an unbounded number

of instances of the protocol. To do so, ProVerif overapproximates the state space of the

protocol and explores it. As a result, when ProVerif claims that a property is true (i.e.,

no attack is possible), then it is true. In other words, ProVerif is sound. If ProVerif can

prove a property is false, it generates an attack trace on why the property is not true.

ProVerif provides use of private channels. These channels are especially useful for

modeling end-to-end encrypted channels between components, where the adversary is

assumed not to have access to the messages.

ProVerif Limitations. Although ProVerif is sound, it is not complete. That means,

118

ProVerif may not be able prove that a property holds. If ProVerif cannot prove that the

property is neither true nor false, ProVerif states so.

Due to the overapproximation of the state space, it is possible that ProVerif finds

an attack, although there is no attack possibility. In these cases, the attack trace can be

investigated to confirm whether the attack is true or false.

As stated above, ProVerif performs the analysis with an unbounded number of

sessions of the protocol. However, the repetition of actions cannot be supported, because

repeated actions are translated into the same internal representation in ProVerif as non-

repeated actions. As a result, there is no method for counting how many instances of the

protocol ran until a point. This limitation prevents modeling of an adversary that might

delay its attack until only after a certain number of messages have been received.

ProVerif cannot model traffic analysis. Additionally, privacy properties based on the

‘hiding in the crowd’ principle cannot be modeled. Although a piece of information

may not be useful for a practical attack in a probabilistic sense, the mere fact that the

adversary has access to it will trigger ProVerif to generate an attack trace.

4.11.2 Modeling Primitives

In this section, we describe the primitives we use throughout our model. We also

state the limitations in the modeling of these primitives and how that might affect our

verification results.

4.11.2.1 XOR-encryption

Our system uses XOR as its crypto primitive like SplitX [97]. Splitting is equivalent to

encryption, and joining is equivalent to decryption. Recall that, in order to send a string

S to a destination, the source splits S to obtain two split messages, X and R. Let L be

119

(* XOR-encryption and decryption *)
(* same as symmetric encryption/decryption *)
fun split(bitstring, bitstring): bitstring.
fun join(bitstring, bitstring): bitstring.
equation forall s: bitstring, r: bitstring; join(split(s, r), r) = s.
equation forall s: bitstring, r: bitstring; split(join(s, r), r) = s.

Figure 4.12: Formal definition of splitting and joining.

the length of S . The source first generates a one-time, random key R of length L and

encrypts S with R:

X = S ⊕ R

After receiving both split messages, the destination joins them to obtain S :

S = X ⊕ R

We model our split and join operations simply as symmetric encryption and decryp-

tion (Figure 4.12).

Limitations of our XOR modeling. The exclusive-OR (XOR) operation is commutative

and associative. In addition, equal strings cancel each other out when XORed together.

These properties cannot be modeled in ProVerif explicitly. As a result, certain attacks

making use of these properties cannot be explored by ProVerif.

Although the use of special channels (see Section 4.11.2.2 for details) allow us to work

around the lack of cancellation property of XOR, it also weakens the ProVerif attacker:

the attacker cannot arbitrarily XOR any two split messages it has access to and discover

potential secrets.

We acknowledge these weaknesses in our model, but also point out that our protocol

does not trust any one component to have both split messages before and during the

120

(* special type for the PXH result *)
type PXH.
(* comparison operations are irreversible because of the secure hash *)
(* therefore, they have no destructors *)
(* PXH operations for aggregator and proxy1 *)
fun computePXH(bitstring, bitstring, bitstring): PXH.
(* PXH operations with no secret *)
(* the following operation is only used to demonstrate the *)
(* ’known R values’ attack by the adversary at proxy2 *)
fun computeKnownPXH (bitstring, bitstring): PXH.

Figure 4.13: Formal definition of the PXH operation. The third parameter is the secret
shared between the collecting components (i.e., in our description, Proxy1 and the
aggregator).

discovery (i.e., X values are held by Proxy1 and R values are held by the aggregator). As

a result, one component cannot obtain the original string values or string types before

the counts of the string values pass the noisy threshold. When there is no collusion

among these components, which we assume, the adversary cannot access both values at

the same time.

Furthermore, the R values are generated independently for each encrypted string:

XORing just any two split messages will not yield anything meaningful. This case is

similar to one component holding the random keys for symmetrically encrypted strings

and the other holding the encrypted strings.

4.11.2.2 Pairwise-XOR and Hash (PXH)

To count distinct string values without revealing them, our system uses the pairwise-

XOR and hash method to blindly determine the equality of any two XOR-encrypted

strings. The pairwise-XOR and hash (PXH) operation works by comparing the

PXHRelay1(sidi, sid j) and PXHRelay2(sidi, sid j) values for two strings, S i and S j, with sidi

121

and sid j, respectively. Recall that:

PXHRelay1(sidi, sid j) = H(Xi ⊕ X j)

= H((S i ⊕ Ri) ⊕ (S j ⊕ R j))

PXHRelay2(sidi, sid j) = H(Ri ⊕ R j)

= H(Ri ⊕ R j)

If S i = S j, then PXHRelay1 = PXHRelay2 = H(Ri ⊕ R j), because equal strings will cancel out

during the XOR operation (i.e., before the secure hash).6 The formal definition of the

PXH operation can be found in Figure 4.13.

While our PXH operation is straightforward, modeling it using ProVerif is not: Equal

strings are supposed to cancel each other out; however, this functionality of XOR is not

supported in ProVerif. Although there has been work on how to reduce protocols that

use XOR semantics to a non-XOR version, such that ProVerif can be utilized [127], our

approach is much simpler.

To overcome this lack of functionality, we utilize two special channels (Figure 4.14).

We ensure that these channels are private (denoted as ‘[private]’ after the declaration in

Figure 4.14), and thus, not accessible to the adversary. These channels help us emulate

the ideal functionality of the PXH operation, in which equal strings cancel each other out.

These channels work as follows (Figure 4.15): Clients output their string values and split

identifiers (i.e., sid) to a channel (i.e., csid str map). The aggregator outputs the PXH

value of two encrypted strings along with the {sid, sid} tuple to another channel (i.e.,

cpxh sid sid map). The comparing proxy (in our model, Proxy2), uses the PXH value

to retrieve the original sid values of the strings from channel cpxh sid sid map. It then

uses the sid values to retrieve the original strings from csid str map and then compares

6In our description of mirror operation 1, these relays correspond to Proxy1 and the aggregator. Here,
we model the general PXH operation.

122

(* private channels used to determine equality of strings *)
(* no XOR support for equal strings canceling each other out *)
free csid_str_map: channel [private].
free cpxh_sid_sid_map: channel [private].

Figure 4.14: Special channels to emulate the PXH comparison due to incomplete XOR-
functionality support in ProVerif. These channels are private (denoted as ‘[private]’ after
the declaration) and are inaccessible to the adversary.

(* client: process clientCollection *)
out(csid_str_map, (sidstr, str));
(* aggregator: process aggregatorComparison *)
out(cpxh_sid_sid_map, (pxhA, (sid1, sid2)));
(* comparing proxy (in this model, proxy2): process proxy2Counting *)
in(cpxh_sid_sid_map, (=pxhA, (sid1c: bitstring, sid2c: bitstring)));
in(csid_str_map, (=sid1c, str1c: bitstring));
in(csid_str_map, (=sid2c, str2c: bitstring));

Figure 4.15: Use of the special channels in each process.

their values. This way, we can emulate the cancellation property of XOR and determine

whether any two strings are equal.7.

Note that these channels are only used for the PXH comparison to determine the

equality of encrypted strings. Even if we place the adversary at Proxy2, our model

ensures that the adversary does not have access to these channels or to the variable

values obtained from these channels.

4.11.2.3 Noisy Threshold

Our model does not consider the threshold t and the noise that is added to the counts of

encrypted strings. This noise is essential to ensure that an adversary cannot make the

system reveal a string value whose count is artificially inflated (i.e., via fake clients) to

be above the threshold. For example, the adversary may run t − 1 fake clients and send

the string value in a discovery procedure in an attempt to make its count go above the

7The other collecting component (i.e., Proxy1) could also output the PXH values and the corresponding
(sid, sid) tuples, but outputting these values once is sufficient because they are only used as lookup keys.

123

threshold to deduce the existence of a real client with that string value.

Unfortunately, we cannot use counts in ProVerif, such that we cannot model the

threshold nor the noise. Our protocol depends on the Laplace noise that is used by

differential privacy [102] to prevent this attack. According to Laplace noise as described

in Section 4.7.3, the existence of a real client with a string value does not significantly

affect the discovery of the string: The client may exist (i.e., the noise-free count is t) and

the noise may be negative, and thus, the string may not be discovered. On the other

hand, the client may not exist (i.e., the noise-free count is t-1) and the noise may be

positive, and thus, the string may be discovered. These two cases are indistinguishable.

For a pattern to emerge, the discovery procedure needs to be repeated multiple times.

The number of repetitions depends on the ε value, with lower ε values needing more

repetitions. The aggregator also can ask the clients not send already discovered strings

(Section 4.8.1), making the attack more difficult: the rare string from the real client will

not be sent again after the first discovery, increasing the time required for this attack

to succeed and making it impractical. High ε values for low noise can be detected by

clients, watchdogs and proxies.

In our model, we abstract away the threshold and model the adversary’s end goal of

deducing the existence of a string by exploiting the comparison result. In our system,

this goal is only achievable by Proxy2, in which it may exploit the comparison result

between an unknown string and a known string sent by one of its fake clients. Our

ProVerif model then covers the cases, in which Proxy2 can identify these strings and

ensures that our protocol prevents this identification. We then reason about a case that

cannot be modeled in ProVerif and reason why it is not a problem in practice according

to our assumptions. As a result, the comparison result cannot be exploited by Proxy2

(Section 4.11.3.5).

124

fun LINK(bitstring, bitstring): bool [private].
reduc forall a: bitstring, b: bitstring;
INFER_SYMMETRY(LINK(a, b)) = LINK(b, a).
reduc forall a: bitstring, b: bitstring, c: bitstring;
INFER_TRANSITIVITY(LINK(a,b), LINK(b,c)) = LINK(a,c).

Figure 4.16: Formal definition of linkability. The LINK function is private (denoted as
‘[private]’ after the declaration) and is inaccessible to the adversary. After receiving
the result of the explicit LINK function, the adversary can use the INFER SYMMETRY
and INFER TRANSITIVITY functions to link variables that may not have been linked
explicitly.

4.11.2.4 Datastores

We model a component’s datastores as private channels. These datastores enable us to

store the state of a component. We encode state information using messages and use the

channel as a key-value store. Similar to Koi [116], our lookup operation consists of two

parts. We first retrieve the message using the conditional lookup, which removes the

message from the private channel (cds) and binds the variable v to the value of key k with

the statement in(cds, (= k, v));. We then add the same message to the channel with the

statement out(cds, (k, v));. As a result, we can keep the state information of a component

in the channel, but can also perform operations according to the stored values.

4.11.2.5 Unlinkability

We model unlinkability in our system similar to Koi [116] (Figure 4.16). Any two vari-

ables that an adversarial component has access to at a single protocol step are explicitly

linked using the private LINK function (denoted as ‘[private]’ after the declaration

in Figure 4.16). The result of this function is made available to the adversary via the

spyAtt channel in the model (§4.11.3.1). We use the query functionality of ProVerif to see

whether the adversary has access to the explicit linking information about two variables.

The adversary can also use two public functions to infer the linkability of two

125

fun EXISTS(bitstring): bool [private].

Figure 4.17: Formal definition of existence. This function is private (denoted as ‘[private]’
after the declaration) and is inaccessible to the adversary.

variables. The INFER SYMMETRY function models the symmetry property of the

LINK function: if the variable a is linked to b, then b is also linked to a. The IN-

FER TRANSITIVITY function models the transitivity property of the LINK function: if

a and b are linked to each other, and b and c are linked to each other, then a and c are

also linked. Note that a and c may not have been accessible by the adversary at a single

protocol step (e.g., collection of encrypted strings). The INFER TRANSITIVITY function

enables the adversary to infer linkability of such variables: a and b may be available at

the collection of encrypted strings, and b and c may be available at the comparison and

counting, and the adversary will still be able to link a and c together.

Alternative to this explicit LINK function, one can also make the LINK function

public. This approach essentially would allow the adversary to link any two variables

it has access to, without needing the INFER SYMMETRY and INFER TRANSITIVITY

functions to achieve the same linking information. However, this approach leads to the

adversary being able to link any two variables at any time of the protocol steps, leading

to many false attacks. For example, assume the adversary is Proxy1 and it runs its own

clients. These clients’ string types are naturally available to the adversary at Proxy1.

Proxy1 also interfaces with honest clients, such that their network address is available.

A public LINK function causes ProVerif to think that the adversary can link the honest

client’s address to the string type it knows from its own clients. As a result, many false

attacks are reported by ProVerif.

126

4.11.2.6 Existence of a String

It is not possible to model counts in ProVerif. As a result, it is not straightforward to

model an attack, in which the adversary creates enough Sybil clients and uses them to

artificially inflate a string’s count. This inflated count can then be used in an attack, such

as deducing the existence of a string value at a real client. To overcome this limitation,

we consider the end goal of the adversary, and model a specific function that denotes

the existence of a string value (Figure 4.17).

This function is private (denoted as ‘[private]’ after the declaration in Figure 4.17).

In our model, whenever the adversary can deduce that a string value str exists (i.e., by

knowing the comparison result is equal and knowing one of the compared strings), an

EXISTS(str) message is emitted on the public channel the adversary has access to (i.e.,

spyAtt).

As a result, we can emulate the attacks where the adversary can exploit the compari-

son result and deduce that a string value exists at a real client.

4.11.3 Protocol Model & Verification Results

Here, we present the formal model of our system. For clarity, we describe the mirror

operation 1, in which Proxy2 is responsible for the comparison (Figure 4.3). We again

consider our protocol without the optimizations. Later, we describe our model’s limita-

tions (due to limitations of ProVerif) and explain why our optimizations do not conflict

with our privacy goals in practice.

In our model, we place the adversary separately at each component along our as-

sumption that they are not going to collude. We then describe which variables are of

interest to the adversary, which attacks are modeled, and any potential attacks ProVerif

finds. We then reason about why some of these potential attacks are false attacks.

127

Table 4.2: Attacks found by ProVerif by various adversaries. The attack in the last row is
known, but cannot be modeled in ProVerif.

Found by
Adversary Attack ProVerif? Validity (Reasoning)
Aggregator with LINK(strtype1, strtype2) Yes False (Section 4.11.3.3)
fake clients LINK(str1, str2) Yes False (Section 4.11.3.4)
Proxy1 access to client IP Yes False (Section 4.11.3.3)

LINK(pipC, ipC) Yes False (Section 4.11.3.4)
Proxy2 access to client IP Yes False (Section 4.11.3.3)

EXISTS(str1) Yes True with incomplete
Proxy2 (known sid values) protocol (Section 4.11.3.5)
with fake EXISTS(str1) Yes True with incomplete
clients (known PXH values) protocol (Section 4.11.3.5)

EXISTS(str1) No True with very low
(count-as-a-signature) probability (Section 4.11.3.5)

We divide our description along the lines of our protocol’s phases. Each protocol

phase builds on top of the previous one, such that the adversary can utilize the infor-

mation it might have obtained during an earlier phase. For example, in the collection

phase, the adversary still has access to the information that might have been exposed

to the adversary during the initialization phase. All model files along with documenta-

tion can be found at the following address: https://www.mpi-sws.org/˜iakkus/

private/verif/

4.11.3.1 Adversary Model

The standard adversary in ProVerif has access to public channels and can observe only

messages that are sent on those channels. In our system, components interact with

each other using end-to-end encrypted channels that are modeled as private channels

in ProVerif, preventing the adversary access to these variables. Other variables in

compoents’ internal states would not also be visible to the adversary. As a result,

the standard adversary would not have access to any of the secret information in our

protocol.

128

https://www.mpi-sws.org/~iakkus/private/verif/
https://www.mpi-sws.org/~iakkus/private/verif/

(* adversary can learn the client IP address? *)
(* (anonymity) *)
query attacker(ipC).

(* adversary can link the client IP to a string type? *)
(* (unlinkability) *)
query attacker(LINK(ipC, strtype1)).
query attacker(LINK(ipC, strtype2)).

(* adversary can link an anonymous client to two string types? *)
(* (anonymous profiling) *)
query attacker(LINK(strtype1, strtype2)).

(* adversary can link a client IP with a string? *)
(* (unlinkability) *)
query attacker(LINK(ipC, str1)).
query attacker(LINK(ipC, str2)).
query attacker(LINK(ipC, str3)).

(* adversary can link an anonymous client to two strings? *)
(* (anonymous profiling) *)
query attacker(LINK(str1, str2)).
query attacker(LINK(str1, str3)).

(* adversary can deduce that there exists a client with a string? *)
(* (existence of a string) *)
query attacker(EXISTS(str1)).

(* adversary can correlate a pseudo IP address to a real IP address? *)
(* (anonymity) *)
query attacker(LINK(pipC, ipC)).

Figure 4.18: Adversary queries in our ProVerif model. These items are queried through-
out our model to see whether the adversary has access to the respective piece of infor-
mation.

129

Our protocol, however, assumes that the components are honest-but-curious, mean-

ing that they will try to learn as much information about clients as possible from the

variables they obtain. As a result, we need a way to let the ProVerif adversary have

access to the internal state of the component, where the adversary is modeled to be.

To do so, we use a public channel (i.e., spyAtt) similar to Koi [116]. Depending on the

component we model as the adversary (e.g., adversarial aggregator), we emit messages

that contain the internal state of that component on the public channel.

4.11.3.2 Adversary Goals

Figure 4.18 shows the list of queried items throughout our model. Depending on which

entity is the adversary, some queries will be trivial cases leading to false attacks. For

example, querying whether the adversary at a proxy has access to the client IP does not

make sense: one of the tasks of the proxy is to provide clients with network anonymity.

Table 4.2 gives a summary of the attacks ProVerif finds and cannot find as well as

whether the attacks it finds are false along with the section numbers explaining the

reasoning.

4.11.3.3 Discovery Initialization

Adversary at the Aggregator. To distribute the string discovery parameters to the clients,

the aggregator needs to learn the string type. However, this information by itself is

not useful to the aggregator, because it already organizes all discovery procedures and

knows the string types from all analysts. Rather, the linkage between a client and its

string types is of interest to the adversary. Additionally, the adversary at the aggregator

may want to learn the string types a given client has, such that it can anonymously

profile the client. At this phase, the clients do not send their strings yet.

130

ProVerif cannot find any attacks in the protocol as expected, because the proxies

forward the client requests to the aggregator without exposing the client IP address.

The aggregator may run its own clients, whose string types it knows. When ProVerif

is run, it finds an attack in which the aggregator can anonymously profile a client:

the adversary can obtain the linkage between two string types (e.g., LINK(strtype1,

strtype2)). When we investigate the attack trace generated by ProVerif, we find that

the adversary accesses this information from the clients it runs. In other words, the

aggregator anonymously profiles its own clients! When the adversary’s clients are not

used, ProVerif cannot find any other attacks.

Adversary at Proxy1 or Proxy2. The proxies provide the clients with network anonymity,

and thus, see the client address. However, the requests containing the string types of the

client are XOR-encrypted, such that the proxies do not see them. Generic string types

(e.g., ‘visited websites’) are available at each client, such that the adversary does not gain

any new information. For analyst-specific strings, the XOR-encryption prevents each

proxy from learning the string type assuming there is no collusion between the proxies.

Similarly, when the proxies forward the string discovery parameters back to the clients,

they cannot obtain any information about the string types, because the parameters are

also XOR-encrypted.

When the adversary runs its own clients, it naturally knows their string types.

ProVerif finds the same false attacks as above. Besides these false attacks, ProVerif

cannot find any other attacks.

4.11.3.4 Collection of Encrypted Strings

Adversary at the Aggregator. During the collection of encrypted strings, the aggregator

receives the string type. This string type is used to compile the comparison lists. For

131

example, multiple analyst-specific string types are put into the same comparison list.

An adversary at the aggregator may want to obtain the client IP and link it to the string

type it receives. However, the client sends its string type over the proxies in a split form.

Therefore, it is similar to the discovery initialization and the aggregator cannot obtain

the linking between the clients and their string types. At this point, the client strings

are still XOR-encrypted, the aggregator holding the R value and the other collecting

component (e.g., Proxy1) holding the matching X value.

The aggregator may run its own clients, whose string types and string values it

knows. Again, ProVerif finds an attack, in which the adversary can obtain the linkage

between two string types similar to the initialization phase, but also with two strings (e.g.,

LINK(str1, str2)). The investigation of the attack trace again shows that the adversary

accesses this information from the clients it runs. Without the adversary’s clients,

ProVerif cannot find any other attack.

Adversary at Proxy1. Similar to the above description, ProVerif finds false attacks about

anonymous profiling when the adversary runs its own clients to participate in string

discovery procedures.

Proxy1 forwards the double-split messages that carry the string type to the aggregator,

and therefore, interacts with the client directly. However, it does not see the client IP

for the collection of the X values and only receives a pseudo IP pIP assigned by Proxy2.

ProVerif finds an attack in which the adversary can correlate the client IP with the pseudo

IP address, because it has access to both variables. This attack is a false attack, because

the system assumes that there will be many clients participating in a string discovery

procedure. Any such linking will be equally likely for any client and thus, not meaningful.

The probability of correlating the pIP value to the client IP will be inversely proportional

to the number of cients.

The adversary sees the client IP address, because it is the proxy’s task to provide the

132

clients with network anonymity. Besides this trivial case, ProVerif cannot find any other

attacks.

Adversary at Proxy2. Proxy2 assigns a pseudo IP address to each client and forwards

the X values to Proxy1. Besides the false attacks about anonymous profiling and a trivial

case of Proxy2 accessing the client IP address, ProVerif cannot find any other attacks.

4.11.3.5 Blind Comparison and Counting

Adversary at Proxy1 or the Aggregator. The comparison and counting of the encrypted

strings is done blindly using the comparison of PXH values. This comparison does

not leak any information about the strings being compared, except for their equality

or inequality. This comparison result is not learned by the collecting components (i.e.,

Proxy1 and the aggregator), and they do not receive any new piece of information

regarding string values and string types (besides the information they obtained in the

previous stages of the protocol). ProVerif finds the same (false) attacks described above

when the adversary is considered to be one of these components. Therefore, we do not

discuss these cases explicitly.

Adversary at Proxy2. On the other hand, Proxy2 compares the PXH values and deter-

mines the equality of the strings. It puts equal strings into equality lists, such that if two

strings are found to be equal, they are put into the same list. At the end of the counting

process, Proxy2 adds noise to each list’s length length and filters the lists that are below

the threshold. It then selects a representative string from each list and reports the count

to the aggregator.

To perform these tasks, Proxy2 learns the comparison result. Proxy2’s role to make

the comparison enables it to deduce the existence of a string (besides the other pieces

of information it may want to learn) if the necessary conditions arise. In the rest of

133

this section, we describe more specific attacks involving the adversary at Proxy2. We

introduce bugs to the original protocol and let ProVerif find the attacks, and explain how

the original protocol prevents these attacks. We finally describe another attack, which

ProVerif cannot find due to its limitation to model counts and how this attack is not of

concern because of the system’s underlying assumptions.

Known sid Values Attack. Proxy2 may run clients and send known strings. It can

determine that one of these strings is being compared with another string by utilizing

the sid values the clients send and the collecting components (i.e., Proxy1 and the

aggregator) use as identifiers for the compared strings. We model this attack and verify

that Proxy2 indeed can use this approach to determine the existence of a string: ProVerif

finds the attack and generates the attack trace.

Our original protocol prevents this attack by modifying the original sid values by

overwriting them with a shared secret Rs between the collecting components, such that

sid′i = H(sidi ⊕Rs). When the original protocol is modeled, ProVerif cannot find any other

attacks.

Known R Values Attack. Another method Proxy2 can utilize to determine that it is

comparing a known string value with another unknown string value is to use the

R values.8 When the PXH operation is applied without the secret shared between

the collecting components, it is possible for Proxy2 to identify PXHAggregator(sid′i , sid′j)

= H(R1 ⊕ R2). 9 Consequently, when a known PXH value is received by Proxy2, it

can deduce that sid′i corresponds to sidi and sid′j corresponds to sid j (or vice versa).

Afterwards, when an unknown string is compared with one of these identified strings,

Proxy2 will be able to deduce the existence of a string.

Indeed, if the PXH values are computed without the secret between the collecting

8Or X values.
9Or PXHProxy1 (sid′i , sid′j) = H(X1 ⊕ X2).

134

components, ProVerif finds the attack trace in which the adversary at Proxy2 can launch

this attack. The original protocol modifies the PXH values with the secret, such that

PXHAggregator(sid′i , sid′j) = H(R1 ⊕ R2 ⊕ Rs) and PXHProxy1(sid′i , sid′j) = H(X1 ⊕ X2 ⊕ Rs). With

the original protocol, ProVerif cannot find any additional attacks.

Count-as-a-Signature Attack. Although we can model the above attacks and ProVerif

is able to find them, there is another theoretical method for Proxy2 to identify strings its

clients sent: by using the count of strings as a signature. Proxy2 can run clients to send a

particular string. When the equality lists are formed, Proxy2 can identify these strings

from the list’s length and identify their sid′ values. Afterwards, Proxy2 can utilize the

comparison results of these strings with other unknown strings to deduce a string’s

existence.

Unfortunately, due to the lack of count support, this attack cannot be modeled in

ProVerif. Although one can manually create a certain number of string instances, one

cannot check the number of instances against a constant value.

This attack, however, is not a concern for the system in practice for the following

reasons. The system assumes that the string distributions most probably follow a power

law. This assumption means that there will be a long tail in the distribution, leading

to a situation in which there are many strings with small counts. As a result, to create

a unique signature for the string value injected via fake clients, Proxy2 would have

to create many clients. Additionally, the duplicate detection mechanism would force

Proxy2 to use one client for one string instance, increasing the difficulty of this attack

even more. Finally, Proxy2 would have to guess the number of actual clients with

that string value that will choose Proxy2 for the comparison, such that it can correctly

estimate and identify the count as the signature. Even if it could do that, it still would not

know how many clients with that string value have picked Proxy1 for the comparison.

We think that in practice, this attack will not be feasible with very high probability.

135

4.11.3.6 Duplicate Detection

To prevent a malicious client from arbitrarily manipulating string counts by sending

the same string multiple times, our system performs a duplicate detection before it

counts the encrypted distinct strings. The high-level idea is to run the same blind

comparison protocol, but this time among all strings from a given client: equal strings

will be duplicates, indicating a malicious client without revealing any strings. This phase

is similar to the comparison and counting phase, in which Proxy1 and the aggregator

perform the PXH operations and Proxy2 compares the PXH values.

Similar to the comparison and counting phase, ProVerif finds the same (false) attacks

when the adversary is considered to be either the aggregator or Proxy1. We do not

discuss these cases any further.

As for the adversary at Proxy2, it still learns the comparison result. However, this

result is not exploitable by the adversary, because the comparison is performed only

among the strings from the same client. That means, if Proxy2 were to use fake clients

and send strings, they would be compared with each other (and not with other honest

clients’ strings). As a result, Proxy2 cannot exploit the comparison result to deduce the

existence of a rare string value at an honest client.

Additionally, Proxy1 and the aggregator use different secrets in the duplicate de-

tection and comparison phases to modify the sid and PXH values. As a result, Proxy2

cannot correlate the strings it compares in both of these phases.

4.11.4 Informal Analysis of the Remaining Protocol

Here we describe some parts of our protocol that were not modeled using ProVerif. We

informally reason about why these parts do not affect our privacy goals in practice.

136

4.11.4.1 Mixing of Analyst-specific String Types for Comparison Lists

Our model does not consider the synchronization that takes place between the aggre-

gator and the other collecting component (i.e., Proxy1 in our description). During this

synchronization, the aggregator mixes multiple analyst-specific string types into a single

comparison list. While we could model this action in ProVerif, it would cause a number

of false attacks due to the limitation of modeling ‘hiding in the crowd’ principle in

ProVerif. Here, we reason about why this mixing helps us achieve our privacy goals in

practice.

Recall that before the blind counting step, Proxy1 receives each comparison list (CL)

from the aggregator, such that it can compute the PXH values. However, it does not

receive the associated string type S T for each list. Proxy1 has access to the sid values

used by its fake clients. It can use them to send strings with certain S T values and use

these strings as a signal for the S T value of a CL. Any such information is uncertain,

short-lived and anonymous: Multiple analyst-specific S Ts are mixed into the same CL,

making Proxy1’s guess uncertain (Section 4.8.3). Knowledge about a generic S T is not

valuable, because every client has it. Proxy2 anonymizes clients with a temporary pIP

valid only for one epoch (Eqn. 4.3).

In ProVerif, the adversary at Proxy1 would have access to its clients’ string types.

This knowledge would cause ProVerif to think that an honest client’s string type is the

same, just because they belong into the same comparison list. In a probabilistic sense,

this deduction depends on the total number of string types being mixed into a single

comparison list. Unfortunately, this probability cannot be modeled in ProVerif.

137

4.11.4.2 Mixing of String Types and PseudoIP Values in Duplicate Detection

Our system relies also on mixing the string types and pseudo IP values during the

duplicate detection phase of our protocol. Similar to the previous case above, we have

not modeled this part.

In Stage 2 of our duplicate detection mechanism, Proxy1 sends the pIP′ → sidL′ to

Proxy2. The aggregator sends the S T ′ → sidL′ mappings, where S T ′ corresponds to

multiple analyst-specific string types. Proxy2 in turn uses both mappings to send back

groups of sid′ values, such that a group for Proxy1 corresponds to a 〈S T ′, pIP′〉 tuple

and a group for the aggregator corresponds to multiple pIP′ values with the same S T ′.

During this procedure, Proxy1 does not learn the S T ′ values in each group; only

that they may be different. Furthermore, each S T ′ consists of multiple analyst-specific

string types, preventing Proxy1 from deducing the string type of a client. Similarly, the

aggregator does not learn the pIP′ values; a pIP′ value may be in multiple groups and a

group has multiple pIP′ values.

4.11.4.3 Sample-Identify-Count-Filter Optimization

Our Sample-Identify-Filter-Count (SICF) optimization requires the model of counting

support: the strings in each sample need to be counted, and the most popular strings are

requested to compared with the rest of the strings to obtain a full count. For this reason,

we did not consider this optimization in our model.

The reasoning about the privacy of this optimization is the following: To filter equal

strings from the comparison list, Proxy1 and the aggregator learn comparison results

between some strings. If they identify one of these strings (e.g., their fake clients sent it),

they can expose honest clients’ strings that are equal to the identified string. However,

they learn many sid′ values of strings equal to any one of the p common strings, and thus,

138

cannot be certain which strings are actually equal. In addition, these results belong to

the p most common strings in the random sample, which reflects the string counts in the

original comparison list. As a result, to expose a rare string, an adversary would need to

send it so many times to make it one of the p most common strings in the sample. Our

duplicate detection mechanism raises the bar for the adversary, forcing it to use more

Sybils.

4.11.4.4 Short Hashes Optimization

It is straightforward to model our optimization that uses a small number of hash values.

The hash value of the string only needs to be transmitted during the collection of

the encrypted strings to the aggregator, similar to the string type. One can simply

imagine that the string type already encodes the hash value. For example, one string

type could be ‘websites with hash 0’, while another could be ‘websites with hash 1’,

‘websites with hash 2’ and so on.

The reasoning about the privacy of this optimization is the following: With a small

number of hash buckets, many distinct string values will map to the same bucket (i.e.,

many hash collisions). Thus, the information gained about a string by knowing its

bucket value will be small. For example, with 128 buckets, the average numbers of

distinct string values per bucket in our datasets are about 7.8K for websites and 101K

for search phrases. Clients and watchdogs can set a maximum value for the number of

buckets allowed (e.g., ≤128).

4.12 Evaluation

In this section, we evaluate our system with real-world data. We first describe our

datasets. We then evaluate our optimizations individually to show the benefits each

139

optimization offers. We report on microbenchmark results, which we use to evaluate our

system’s overall feasibility. We compare our system with Applebaum et al.’s system [83]

rather than [90] or [99], because it is the most similar system from previous work: it

has centralized components that can run fake clients, offers some protection against

malicious clients, and aims to provide aggregation in large-scale environments.

Applebaum et al.’s system has three components: client, proxy, and database. The

client runs an encrypted, batched oblivious transfer (OT) protocol with the proxy to

obtain encrypted and obliviously-blinded strings. During this process, these blinded

strings are encrypted with the database’s public key. The client then doubly-encrypts

its strings as well as their values (i.e., ‘0’ or ‘1’), first with the proxy’s and then with the

database’s public key. It also generates a zero-knowledge proof (ZKP) [114] per string to

prove that the values used were ‘0’ or ‘1’. All ZKPs and encrypted strings are sent to the

proxy, who forwards them to the database. The database verifies the proofs, decrypts

the blinded strings and their values, and records them. If a blinded string’s sum of

values from all clients passes a threshold, the corresponding doubly-encrypted string is

decrypted. Note that no noise is added to the counts of strings in this scheme.

4.12.1 Datasets

The strings in the first dataset are website names in a snapshot of Quantcast’s top 1M

sites in April 2013 [51], ranked by their visitor counts. The strings in the second dataset

are about 13 million unique, anonymized search phrases from a large search engine10,

covering 3 months between 2011 and 2013. We assume each occurrence of a phrase

is from a unique client. We label data based on the distributions of these datasets as

“quantcast” and “search”, respectively.

10We cannot disclose the name for confidentiality.

140

4.12.2 Benefits of Optimizations

4.12.2.1 Sample-Identify-Count-Filter

To gauge this heuristic’s potential, we ran a test with 10M strings distributed based

on our real-world datasets. The discovery threshold is 100, and the number of most

common strings identified (p) is 20. We used samples with 99% confidence level and 3%

margin of error, and stopped after 10 successive rounds of no newly discovered strings.

This test validated our assumptions about string distributions and power law: 10% of

the discoverable string values correspond to about 36% of all quantcast and 31% of all

search strings. Our heuristic discovered most discoverable string values (97.5% and

93.3%) with effective speedups of 335.5 and 219.6.

4.12.2.2 Short Hashes

To show this heuristic’s efficacy, we compute its speedup. The speedup S is the ratio

of the number of PXH operations performed, without and with buckets. Let N be the

total number of strings, ni be the number of strings in bucket i, and B be the number of

buckets.

S =

N × (N − 1)
2

B∑
i=1

ni × (ni − 1)
2

Figure 4.19 shows the speedup increases with the number of hash buckets: Strings

in separate buckets need not be pairwise compared, reducing the number of PXH

operations. Due to the power law, some strings have large counts, increasing their

respective buckets’ counts. After 256 buckets, these buckets start dominating in the sum

of PXH operations, reducing the speedup. By contrast, with a uniform distribution, the

141

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

S
p
e
e
d
u
p

Number of hash buckets

20M strings, quantcast
20M strings, search

20M strings, uniform

Figure 4.19: Speedup vs. number of hash buckets with 20M strings. Speedup values
were similar with more strings.

speedup is not affected.

4.12.3 Microbenchmarks

We tested all operations on a Linux PC (3.1GHz CPU, 8GB RAM) and an Android smart-

phone (1GHz CPU, 768MB RAM). We used a string length of 100 bytes, including the

padding. This length can be adjusted based on the string type and is not a fundamen-

tal limit, unlike previous work assuming 32-bit strings [83, 90]. Applebaum et al. use

1024-bit keys for encryption and ZKPs.

142

Table 4.3: Client microbenchmarks. OT assumes 32-bit strings. Other operations assume
100-byte strings.

Device
(language) Operation Ops/sec

PC Encryption (El Gamal) 21.54
Apple- (JavaScript) ZKP generation (GM [114]) 3.22
baum Smartphone Encryption (El Gamal) 0.52
et al. (JavaScript) ZKP gen. (GM [114]) 0.08
[83] OT (primitive, single) 0.34

PC OT (batch size=25) 0.14
(C) OT (batch size=50) 0.14

OT (batch size=100) 0.13
PC Split 361,627

(JavaScript) Join 1,181,512
Our SHA-1 118,959
system Smartphone Split 2,922

(JavaScript) Join 22,695
SHA-1 1,761

4.12.3.1 Computation Overhead

Our client overhead is several orders of magnitude less than Applebaum et al.’s (Table

4.3). Multiple strings can be sent in one batched OT, but heavy crypto operations hinder

better performance. Our server operations are also much faster: our PXH operation with

SHA-2 can be executed about 0.8M times/second (Table 4.4).

4.12.3.2 Memory Overhead

Assuming that the batched OT in Applebaum et al.’s system can handle 100-byte strings,

the overhead depends on the batch size (Table 4.5). Even if the clients can handle the

load, the proxy becomes the bottleneck: a batch size of 50 requires about 9.5GB of RAM

for 1K concurrent clients. Note that a smaller batch greatly reduces the batched OT’s

efficiency. Our overhead is significantly lower for both the client and proxy.

143

Table 4.4: Server microbenchmarks. OT assumes 32-bit strings. Other operations assume
100-byte strings.

Component
(language) Operation Ops/sec

Apple- Database Decryption (El Gamal) 270.20
baum (Java) ZKP verification (GM [114]) 19.23
et al. Proxy OT (batch size=25) 1.27
[83] (C) OT (batch size=50) 1.21

OT (batch size=100) 1.00
Proxy XOR 8,300,335

Our (Java) SHA-2 817,003
system Aggregator Split 1,819,459

(Java) Join/XOR 8,300,335
SHA-2 817,003

Proxy
Operation Client (1K clients)

Apple- OT (batch size=25) 4.88 MB 4.77 GB
baum OT (batch size=50) 9.77 MB 9.54 GB
et al. [83] OT (batch size=100) 19.53 MB 19.07 GB

Split (25 strings) 0.005 MB 4.86 MB
Our Split (50 strings) 0.01 MB 9.73 MB
system Split (100 strings) 0.02 MB 19.45 MB

Table 4.5: Memory overheads for privacy-preserving string discovery. We optimistically
assume OT can support 100-byte strings.

4.12.4 Experiments with Real-world Data

This section shows the computational and bandwidth overheads with real-world data.

generated from the distributions of two real-world datasets.

4.12.4.1 Setup

For our experiments, we vary the number of strings from 10M to 100M. The discovery

threshold is set to 100. We assume each client sends 50 100-byte long strings, except

for Applebaum et al.’s batched OT operation at the proxy, which uses 32-bit strings.

144

Applebaum et al. use a ZKP per string for count accuracy. It is unclear how such ZKPs

would detect malicious clients sending the same string multiple times, but we optimistically

assume each client would send only one ZKP for all its strings. In our system, the split

id and seed are 16 bytes each. The string type, epoch end time and ε are 8 bytes each.

We use both our heuristics: For the SICF optimization, we use sample sizes determined

with 99% confidence level and 3% margin of error as well as a p value of 20. For the

short hashes optimization, we evaluate two values for the number of buckets used by

the clients (64 and 128). We set the discovery threshold to be 250.

4.12.4.2 Computation Overhead

Figure 4.20 shows the results. For Applebaum et al., we plot the CPU times for the proxy

to handle the batched OT of client strings, and for the database to decrypt the OTed

strings and verify the ZKPs. For our system, we plot the total CPU time for all PXH

operations (counting and duplicate detection) for the aggregator, because it is used in

both mirror operations.

In Applebaum et al.’s system, the proxy is clearly the bottleneck compared to the

database. Our system requires at most half the CPU time of the database, and even

one order of magnitude less than the proxy, while discovering almost all (99.995%)

discoverable strings.

4.12.4.3 Bandwidth Overhead

In Applebaum et al.’s system, a client runs batched OT with the proxy, and sends blinded

(encrypted) strings, their values, double-encrypted strings, and one ZKP. Excluding OT,

the total cost is about 19KB for 50 strings. A client in our system uses about 10KB, and

0.12KB per poll per string type for initialization.

145

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 20 40 60 80 100

C
P

U
 T

im
e
 (

h
o
u
rs

)

Number of strings (millions)

quantcast (buckets=64)
search (buckets=64)

quantcast (buckets=128)
search (buckets=128)

Applebaum et al. (Proxy)
Applebaum et al. (DB)

Figure 4.20: CPU time vs. number of strings.

In Applebaum et al.’s system, the costs for the proxy and database to handle 50M

strings are about 36GB and 18GB, respectively, again excluding the batched OT opera-

tions for the proxy. Our system’s biggest bandwidth cost is due to the PXH operations

for counting: For 50M strings and 128 hash buckets, the aggregator’s cost is about 625GB

and 850GB for Quantcast and search datasets, respectively, with an average bandwidth

of about 196Mbps (each proxy’s cost is half). The cost of all roles in all other phases for

each dataset is 43.7GB for the aggregator and 71.7GB for each proxy. The aggregator’s

monetary cost for bandwidth would be less than $110 in EC2 [5], and even less if the

servers were in the same datacenter (run by different entities).

146

4.13 Conclusion & Future Work

We presented a privacy-preserving string discovery system that provides analysts with

previously unknown strings of many types and their noisy counts. These strings can

then be used as potential answer values for queries used in our analytics system as well

as other analytics systems. Our system also detects and limits malicious clients that send

duplicate strings and try to manipulate string counts.

We analyzed our system’s privacy properties and evaluated its feasibility with real

world data. Compared to the closest previous private aggregation system, our system

reduces computation overhead several orders of magnitude for the clients, and by at

least two times for the servers. Using XOR as its crypto primitive along with a low-cost

blind comparison method, our system trades off cheap server bandwidth to support

resource-constrained client devices and to count client strings without revealing them.

We think this trade-off will be more important as the prevalence of mobile devices keeps

increasing on the web.

In the future, we plan to better understand the trade-off between privacy and compu-

tation overhead in our optimizations. In particular, we will investigate the possibility of

using differential privacy mechanisms within them.

147

Chapter 5

Literature Survey

This chapter presents the related work most relevant to the approaches presented in this

thesis.

5.1 Third-party Tracking

The existing cookie policies in major browsers have been discussed in Section 2.1. None

of these policies incorporate user interaction. The most similar policy to our policy is

to only accept cookies from visited (i.e., as first-party) sites. However, this policy does

not make a distinction at an element level. As a result, a visited site (e.g., OSN provider)

can track the user activity via social widgets. On the other hand, in our policy, the third

party is not allowed to learn about the user’s activity unless the user chooses so and

only on the pages she activates such widgets.

Of course, these third parties could try to bypass the cookie policy by not utilizing

cookies at all. Browser fingerprinting is such a technique in which a signature of

the browser environment is created. The browser environment includes, but is not

148

limited to the operating system, plugins, fonts and screen resolution. The signature

can then be used to identify browsers uniquely without ever storing cookies on the

user’s browser [106, 131]. Recent studies show that this practice is gaining popularity

for third party tracking [76, 77, 137]; however, they are still not as prevalent as third

party cookies are [107]. Other researchers have been working on potential defense

mechanisms [111, 136]. These mechanisms are orthogonal to our cookie policy.

Ghostery [23] and Disconnect [14] are two popular browser extensions. These ex-

tensions use a blacklist of known trackers. Whenever a known tracker is found in a

page, that element is not loaded. These blacklists need to be maintained periodically.

Ghostery updates its blacklist every few weeks with regular extension updates whereas

Disconnect checks once a day for new trackers. The disadvantages of these blacklists

have been discussed in Section 2.1.

Other browser extensions such as adblockers [2–4] also utilize a blacklist of known

advertisements. The default filters usually hide advertisements only after they are

loaded and the user’s cookie values have been sent to third party trackers. Some custom

filters may specifically prevent known trackers; however, these tools still suffer from the

disadvantages of a blacklist.

The most relevant browser extensions to our policy are ShareMeNot [53, 144] and

Priv3 [43,100]. These extensions have the single, specific goal of preventing online social

network (OSN) providers from tracking users via social widgets. ShareMeNot reloads

the entire page when the user decides to interact with a social widget. Priv3, on the other

hand, utilizes a selective reload mechanism for interacted social widgets, which we also

use in our implementation. In addition, we inherit Priv3’s functionality of preventing

third-party scripts from accessing cookie values until the user interacts with the third-

party content (Section 2.5.6). Both of these extensions use a blacklist that consists of a

handful of OSN widgets, whereas our policy is general and prevents tracking not only

149

by OSN providers, but also data aggregators and advertisement networks.

Firefox’s tracking protection [61, 123] is a fairly recent mechanism that has been

implemented in Mozilla Firefox 35 and newer versions. Rather than relying on browser

add-ons like Ghostery and Disconnect, Firefox has a built-in system for blocking known

trackers. However, this mechanism still uses a subset (about 1500) of blacklisted domains

obtained from Disconnect [123]. To minimize the effects of an incomplete and incorrect

blacklist, Firefox updates this list every 45 minutes. Unfortunately, this blocking of

blacklisted third parties also breaks the functionality of social widgets, if OSN providers

are in the list.

Lightbeam from Firefox [34] dynamically tracks the third parties the browser is

contacting and visualizes them for the user. These third parties then can be blocked by

the user manually. Similar to the tracking protection by Firefox discussed above, such

blocking breaks the functionality of social widgets.

Privacy Badger from the Electronic Frontier Foundation (EFF) [46] also dynamically

tracks the third parties the browser is contacting. Privacy Badger aims to enforce that the

aggregators honor the Do-Not-Track header set by browsers. To achieve this goal, Privacy

Badger uses heuristics to detect and then block third parties that appear to be tracking

the user without her consent. If the content is deemed necessary for the page, cookies

are removed from these requests. More recently, Privacy Badger started also preventing

tracking by social widgets. However, it uses the same blacklist as ShareMeNot [53] for a

few OSN sites (i.e., AddThis, Facebook, Google, LinkedIn, Pinterest, Stumbleupon and

Twitter), and the interaction with the widget is blocked if not manually overridden.

Pan et al. [138] propose a browser, TrackingFree, in which the client data is partitioned

into isolated profiles that are generated on the fly and assigned a new principal for each

site the user visits. The third party content in each site, including set cookies, would be

present in different profiles. As a result, the third parties will not be able to receive the

150

same identifiers (i.e., cookies) to track the user across different sites. To achieve its goal,

TrackingFree has to maintain a complex state of principals governed by a sophisticated

algorithm. Furthermore, it creates user experience problems. For example, if the user

wants to share three different links from three different sites on her Facebook account,

she would need to login to Facebook three times [138]. Although synchronization among

principals can be enabled by the user to avoid this ‘multiple login’ situation, it also opens

the possibility for the third party (in this case, Facebook) to track the user after the

synchronization.

Kontaxis et al. [124] propose a technique for preserving personalization functionality

of social widgets while preserving user privacy. In this technique, the browser keeps

a local copy of the personalized content, such that a social widget can be rendered

without ever contacting the OSN provider. This private information is gathered when

the user naturally visits the OSN. For example, to enable Facebook Like buttons with

personalized content, the client gathers information about a user’s friends and their

“likes” and stores them locally. When a social widget is encountered, this information is

used to render the widget with the personalized content that would have been available

if the client were to contact the OSN. Any other information is gathered from publicly

available information from the OSN. The authors also present a functional prototype

specialized to Facebook.

This approach can preserve more personalized content compared with our cookie

policy: our two-click control renders the personalized content only after the user decides

to interact with the widget. Otherwise, it shows publicly available information (e.g., the

total number of “likes”). This seamless personalization by the above technique, however,

has the following shortcomings. First, the client software needs to recognize all OSN

providers, such that it can gather the required information for personalization. This

need essentially means that the developers have to create a custom scraper for each OSN

151

and maintain them to adapt any changes the OSN provider makes to its pages. Second,

to efficiently gather the personalized information, this scraping process requires some

API support from the OSN provider, which may not provide full functionality or not

exist at all.

5.2 Web Analytics

Although web analytics, as far as we know, has never been considered in a privacy

context, there have been a number of approaches for providing users with privacy

guarantees in distributed settings. These approaches differ from our system in terms of

assumptions, requirements and goals. Here, we review past work most related to our

system, in the areas of anonymous communication, privacy-preserving aggregation and

differential privacy.

Users can use a VPN proxy or an anonymizing network like TOR [59] for anonymous

communication. While providing privacy benefits for anonymous browsing, these

systems are not suitable for non-tracking web analytics: they may violate our non-

tracking goal (e.g., a VPN proxy observing the source and the destination of a session),

mislead the publisher to collect incorrect information (e.g., the proxy’s or TOR exit

node’s address misleading a publisher using IP geolocation), or most importantly, do

not add any noise to the results (e.g., if sensitive data is collected).

For these reasons, researchers have proposed systems that both preserve users’ pri-

vacy and enable accurate collection and aggregation of private information [135, 140].

Anonygator [140] privately aggregates pre-defined histograms (i.e., ranges) from dis-

tributed user devices, but assumes the shared data will not leak privacy. P3 [135] is a

privacy-preserving, distributed personalization system, but requires a method to deter-

mine which data is safe to supply for personalization. These systems, however, either

152

make assumptions about the collected information (i.e., that it will not to leak the source

identity) [140], or require an algorithm to decide which data are safe to contribute, which

may not be easy to devise [135]. In contrast, our system combines differentially-private

noise and separate encryption of answer messages to protect against identity leakage

through the aggregated data, without any assumptions or prerequisites. Furthermore,

these systems rely on an anonymity network, such as TOR, to hide the source iden-

tity (i.e., IP address), whereas our system utilizes an already existing entity (i.e., the

publisher) as an anonymizing proxy.

Applebaum et al.’s system [83] described in Section 4.12 utilizes a proxy and a

database for privacy-preserving aggregation of participants’ private data in the form

of {key, value} pairs. The system’s main goal is to achieve this aggregation without

exposing participants’ keys to each other, which makes it more relevant to our string

discovery system. Nevertheless, the strong cryptographic model the system is using

causes each participant higher overhead than in our system, such that applying it in our

web analytics setting would not be very efficient. Therefore, this system is perhaps more

suitable for publishers wanting to share their own, already aggregated analytics data

rather than for users.

While these systems provide users with some privacy guarantees, they do not utilize

any differential privacy mechanisms, which are considered to give stronger and more

formal guarantees than existing techniques [102, 103, 105]. Many original uses of dif-

ferential privacy, however, assume the existence of a central database controlling the

disclosure of results [85, 118]. Although attempts have been made to provide differential

privacy in a distributed environment, these attempts either incur high overhead [104] or

suffer from client churn [142,147], making them impractical in a large-scale environment.

To tackle this practicality problem, recent proposals employ different approaches for

generating differentially-private noise. Duan et al. propose a system called P4P that

153

utilizes two honest-but-curious (HbC) servers to add noise [101]. They employ relatively

efficient, but still costly zero-knowledge proofs to ensure accuracy of the aggregated

result. Hardt and Nath also use two HbC servers, but propose that users add noise,

such that honest users compensate for the noise that unavailable or malicious users

did not generate [117]. While preserving honest users’ privacy, this system allows a

malicious user to distort the result arbitrarily. Neither of these systems is suitable for

web analytics, assuming that these two servers would correspond to the publisher and

the data aggregator: letting a server know about the other server for a given client

violates our non-tracking goal.

More recently, Chen et al. proposed a proxy-based system (PDDP) for achieving

differential privacy in a distributed environment [98]. PDDP utilizes only one HbC proxy

that distributes an analyst’s queries to clients, collects responses, and adds noise in a

blind fashion, such that it does not know how much noise it added. PDDP does not scale

for web analytics purposes for two reasons. First, PDDP has no way of selecting different

groups of users to receive a given query. In our setting, these groups correspond to the

users that visit a given website. If the proxy knew these separate groups (i.e., knowing a

user is visiting a particular website), it would violate our non-tracking goal. Our system

exploits publishers for this purpose because publishers inherently know which users

visit their websites.

Second, PDDP encrypts every bucket answer, ‘yes’ and ‘no’ alike, making it very

costly for the large-bucket queries that are needed in web analytics. This encryption ap-

proach also prevents PDDP to overcome its first shortcoming of distinguishing different

user groups: to achieve the same non-tracking property as our system, PDDP would

need to distribute all queries to all users and collect all of their answers.

154

5.3 Privacy-preserving String Discovery

XOR [94, 148, 152] and matrix multiplication [122] are used as lightweight primitives for

anonymous communication instead of relatively expensive public key cryptography

operations. These systems do not aggregate user data privately.

Most database privacy research assumes a trusted database [102, 129, 150]. We refer

the readers to a survey [113]. Perhaps, the most relevant systems are the following two.

Chen et al. [96] publish sequential data via variable-length n-grams with differential

privacy. McSherry et al. [132] discover common payloads in network traces by choosing

strings via their noisy counts and iteratively increasing their lengths. Like the previous

systems, these systems also assume a centralized database. Unlike these systems, we

assume a distributed setting, in which user data resides on user devices.

To reduce the trust in the database, some systems encrypt user data before storing

it [139, 146, 149]. Afterwards, such data can be searched and queried. In these systems,

however, the results (i.e., counts) are not noisy. As a result, they may allow a malicious

analyst to learn sensitive information.

Trust in the storage entity can also be decreased using multiple databases. For privacy-

preserving queries over multiple databases, Chow et al. [99] propose a two-entity model.

In this model, one entity shares a secret with the databases to obfuscate results, while

the other aggregates obfuscated data. This scheme is similar to the aggregator sharing

a secret with the clients, who then use the secret as a salt to hash their strings. The

hashes are then used to count client strings. However, if the secret is shared with the

aggregating entity, for example, if the aggregator in our setting runs fake clients, the

privacy properties are lost. In contrast, our threat model allows components to run fake

clients. Furthermore, Chow et al. assume that a database (i.e., a client in our setting)

supplies correct data, which may not be true in analytics scenarios. Our system utilizes

155

a duplicate detection mechanism to limit the effect of these clients.

Sepia [90] is a secure multiparty computation (SMC) framework that specializes in

aggregation of network events without a centralized entity, and can be used for top-k

queries [89]. Via optimized comparison operations, it scales better than other SMC

frameworks, but is limited to short strings (i.e., length of an IP4 address) and fewer

participants (i.e., <100), and thus, cannot be directly applied to our scenarios. Proposals

to improve SMC performance for mobile devices [92,120,121] assume a two-party model.

It is unclear how these proposals can be extended to support millions of clients for our

purposes.

As described in Section 4.12 and mentioned in the previous section, Applebaum et

al. propose a system with a proxy and aggregator to privately aggregate participants’

private data. The main difference between our privacy-preserving string discovery

system and their system is that Applebaum et al. do not add noise to the aggregated

result. Lack of noise opens the possibility for an attacker to create Sybil nodes to

pollute the results and gain knowledge about the existence of a particular string value.

Additionally, Applebaum et al. utilize sophisticated cryptographic operations, which, as

shown in Section 4.12, add significant overheads to the clients. Finally, although they

utilize (expensive) zero-knowledge proofs to ensure that the participants only submit

a value of ‘0’ or ‘1’ for a particular key, there is no mention of a malicious participant

submitting the same key multiple times. Our system prevents this issue with our duplicate

detection mechanism.

Approaches to find frequent items over distributed streams [93,126,130,153,154] have

similar goals; however, we are not aware of any system that achieves all our goals at the

same time in a web-scale environment (i.e., discovering unknown strings, lightweight

client operations, privacy and anonymity for clients, handling malicious clients). Hsu et

al. [119] describe an algorithm to privately find heavy hitters in a distributed setting, but

156

one item at a time. By contrast, our system discovers multiple strings of one type in one

run.

To address both issues about scalability and malicious clients, recent distributed DP

systems employ pre-defined string values and centralized entities. πBox [128] uses pre-

defined counter names. It uses a trusted platform to restrict the interface how much and

how often an mobile application instance (i.e., client) can update a counter. The trusted

platform also adds noise to counter values before reporting them to the developers.

Hardt et al. [117] also use a counter for advertisement impressions (or clicks), but utilize

the clients to add noise. Two honest-but-curious servers then aggregate the counter

values. These two systems assume that the counter names are well-known. Our privacy-

preserving string discovery system complements these systems if they were to require

additional counter names, such as user-defined counters for different applications.

Recently, Friedman et al. [112] proposed a system to monitor distributed stream

sources for frequent items with differential privacy. However, the observed items come

from a fixed list enumerated by the analysts beforehand.

RAPPOR [109] uses Bloom Filters [88] and a differentially-private, randomized

response scheme to obtain frequencies of client strings. However, it requires a list of

candidate strings to decode the filters. RAPPOR does not handle client strings changing

over time (e.g., ‘recently visited sites’) whereas our discovery procedures can be run

periodically to tolerate such changing user data. Furthermore, RAPPOR assumes that

the analyst and the aggregator are the same entities, and thus, the analyst knows all

the clients. This situation is less general than our system, in which the aggregator can

provide string discovery service to multiple analysts in a privacy-preserving manner.

As described previously, PDDP [98] enables aggregation of private user data by

distributing queries to clients and adding noise via a centralized proxy. However,

queries in PDDP also require a list of pre-defined string values as potential answers,

157

similar to our non-tracking web analytics system described in Chapter 3 and SplitX [97].

Our string discovery system is complementary for all these systems, including PDDP in

this regard.

158

Chapter 6

Summary & Final Remarks

Current architectures to provide essential web services for social widgets and analytics

utilize methods that enable third-party service providers to track users across the web.

This tracking leads to privacy concerns among users, who often block and prevent

tracking related elements with client-side tools, reducing the benefits and utility of these

services for the publishers. We think that solutions that favor one side in this struggle

are not viable, and user privacy and functionality should be considered together. In this

thesis, we presented approaches to relieve this tension between privacy for users and

functionality for publishers and other service providers.

We first proposed and explored a new third-party cookie policy that prevents tracking,

but also to enables social widgets on-demand. The power of this policy comes from its

generalization of the simple idea of withholding third-party cookies while loading third-

party resources on web pages until the user interaction. This generalization removes

the need for a blacklist of tracking elements as well as alleviates associated problems of

curation, maintenance and that the blacklist can be bypassed. We showed that our policy

is effective in giving the users more control for social widgets by distinguishing them

from advertisements with high accuracy, eliminates third-party tracking via cookies by

159

online social network providers as well as data aggregators, and imposes low overhead.

We then presented a web analytics system that eliminated the need for third-party

tracking for the purposes of extended web analytics. The system can provide publishers

and aggregators with more accurate and more types of extended web analytics informa-

tion by keeping user data on the user device and directly querying it via the publishers.

At the same time, the system prevents the aggregator from tracking the users by utilizing

the publisher as an anonymizing proxy and adding differentially-private noise to the

results. We showed that this system is feasible, easy to deploy and imposes low overhead

on the clients as well as publishers and acceptable overhead for the aggregators.

The above system and other similar systems require a list of string values that will be

used as potential answer values for the queries they distribute. Our final contribution

is a system that helps the analysts (e.g., publishers) to discover previously unknown

string values for this purpose. Although the discovery system does not provide strict

guarantees of differential privacy, it still enables aggregation of user data under realistic

assumptions and in a privacy-preserving way , in which clients are given anonymity

and unlinkability properties, and attacks to deanonymize a client’s strings are made

difficult. Our system trades off cheap server bandwidth for low client overhead, such

that even the low-resource user devices such as mobile phones/tablets can participate.

As a result, analysts can take advantage of the rich user data accumulating on these

devices that are becoming more and more prevalent.

Although social widgets and web analytics play an integral role in today’s web, they

are certainly not the only essential services that make the web function. Advertisements

have always been a part of the web ecosystem allowing website publishers to monetize

their content and sustain their operations. Meanwhile, reaching the right audience and

increasing the effect of the advertisements have been the ultimate goal of advertisers.

Unfortunately, this goal has been in direct conflict with user privacy most of the time

160

due to targeted advertisements that are determined via third-party tracking.

Recommendation systems are also an another important part of today’s web. These

systems utilize user preferences and previous consumption to provide users with sug-

gestions for new content. The sensitivity of the information that is used for these

recommendations naturally causes privacy concerns.

There have been alternative approaches considering user privacy while providing

targeted advertisements [84, 115, 117, 143, 151]. Similarly, there have been attempts to

provide privacy-preserving recommendations by utilizing cryptography alongside a

server that operates on encrypted data [78, 86, 108]. These systems showcase again that

it is possible to provide privacy and functionality at the same time for web services, and

are complementary to our approaches.

The adoption of these systems, however, does not depend solely on their technical

feasibility. A combination of other factors, such as the economic incentives for the

players, privacy awareness of the users as well as legal frameworks supporting privacy

rights, certainly play a significant role. The challenge in designing such systems then

becomes not only finding the technical solutions to achieve functionality and privacy

goals at the same time, but also finding the right combination of these factors to make

these systems adoptable. This task is certainly not easy; however, we think that the

approaches and systems presented in this thesis as well as others mentioned above are

steps in the right direction.

Going forward, future applications or systems that utilize the web or a web-like

medium should consider user privacy as one of their main goals; user privacy should not

be an afterthought. For example, the prevalence of devices in the form of cheap sensors

is increasing dramatically [1]. These devices are capable of connecting to each other

as well as to the Internet and the web. Found in various areas of our lives from home

automation [54, 58] to fitness applications [32] and toys [60], the Internet of Things [30]

161

is certainly going to enable various new and exciting functionalities. However, one

should not forget that the accumulation of rich amounts of user data will have privacy

implications. Ideas and approaches utilized in this thesis, such as keeping user data on

user devices and under users’ own control as well as distributing functionality among

collaborating components, can be adapted for these new systems.

162

Bibliography

[1] 15 Mind-blowing stats about the Internet of

Things. http://www.cmo.com/articles/2015/4/13/

mind-blowing-stats-internet-of-things-iot.html.

[2] Adblock - Browser faster. Ad-free. https://getadblock.com.

[3] Adblock Edge :: Add-ons for Firefox. https://addons.mozilla.org/

en-US/firefox/addon/adblock-edge/.

[4] Adblock Plus - Surf the web without annoying ads! https://adblockplus.

org/.

[5] Amazon EC2 Pricing. http://aws.amazon.com/ec2/pricing/.

[6] Analytics Technology Web Usage Statistics. http://trends.builtwith.com/

analytics. Aug 2, 2012.

[7] AW Stats - Free log file analyzer for advanced statistics (GNU GPL). http:

//awstats.sourceforge.net.

[8] Bango Dashboard Analytics. http://bango.com/dashboard-analytics/.

[9] Belgium takes Facebook to court over privacy breaches and user track-

ing. http://www.theguardian.com/technology/2015/jun/15/

163

 http://www.cmo.com/articles/2015/4/13/mind-blowing-stats-internet-of-things-iot.html
 http://www.cmo.com/articles/2015/4/13/mind-blowing-stats-internet-of-things-iot.html
https://getadblock.com
https://addons.mozilla.org/en-US/firefox/addon/adblock-edge/
https://addons.mozilla.org/en-US/firefox/addon/adblock-edge/
https://adblockplus.org/
https://adblockplus.org/
http://aws.amazon.com/ec2/pricing/
http://trends.builtwith.com/analytics
http://trends.builtwith.com/analytics
http://awstats.sourceforge.net
http://awstats.sourceforge.net
http://bango.com/dashboard-analytics/
 http://www.theguardian.com/technology/2015/jun/15/belgium-facebook-court-privacy-breaches-ads
 http://www.theguardian.com/technology/2015/jun/15/belgium-facebook-court-privacy-breaches-ads
 http://www.theguardian.com/technology/2015/jun/15/belgium-facebook-court-privacy-breaches-ads

belgium-facebook-court-privacy-breaches-ads.

[10] BlueKai Consumers. http://bluekai.com/consumers_optout.php.

[11] BrightTag ONE-Click Privacy. http://www.brighttag.com/privacy/.

[12] Cookie Synching. http://www.krux.com/company_blog/cookie_

synching/.

[13] Countly Mobile Analytics. http://count.ly.

[14] Disconnect. https://disconnect.me/.

[15] EasyPrivacy. https://easylist.adblockplus.org/.

[16] Facebook Ads Will Now Follow You No Matter What Device You’re Using. http:

//www.wired.com/2014/09/facebook-launches-atlas/.

[17] Facebook Faces Privacy Lawsuit From Belgian Watch-

dog. http://techcrunch.com/2015/06/15/

facebook-faces-privacy-lawsuit-from-belgian-watchdog/.

[18] FatCow Web Hosting. http://www.fatcow.com.

[19] Firebug. https://getfirebug.com/.

[20] Firefox Personalization Study. https://addons.mozilla.org/en-US/

firefox/addon/firefox-personalization-study/.

[21] Flurry. http://www.flurry.com/.

[22] FTC Issues Final Commission Report on Protecting Consumer Privacy. http:

//ftc.gov/opa/2012/03/privacyframework.shtm.

[23] Ghostery. https://www.ghostery.com/.

164

 http://www.theguardian.com/technology/2015/jun/15/belgium-facebook-court-privacy-breaches-ads
 http://www.theguardian.com/technology/2015/jun/15/belgium-facebook-court-privacy-breaches-ads
 http://www.theguardian.com/technology/2015/jun/15/belgium-facebook-court-privacy-breaches-ads
http://bluekai.com/consumers_optout.php
http://www.brighttag.com/privacy/
http://www.krux.com/company_blog/cookie_synching/
http://www.krux.com/company_blog/cookie_synching/
http://count.ly
https://disconnect.me/
https://easylist.adblockplus.org/
http://www.wired.com/2014/09/facebook-launches-atlas/
http://www.wired.com/2014/09/facebook-launches-atlas/
 http://techcrunch.com/2015/06/15/facebook-faces-privacy-lawsuit-from-belgian-watchdog/
 http://techcrunch.com/2015/06/15/facebook-faces-privacy-lawsuit-from-belgian-watchdog/
http://www.fatcow.com
https://getfirebug.com/
https://addons.mozilla.org/en-US/firefox/addon/firefox-personalization-study/
https://addons.mozilla.org/en-US/firefox/addon/firefox-personalization-study/
http://www.flurry.com/
http://ftc.gov/opa/2012/03/privacyframework.shtm
http://ftc.gov/opa/2012/03/privacyframework.shtm
https://www.ghostery.com/

[24] Google Public Policy Blog — Keep your opt-outs. http://

googlepublicpolicy.blogspot.com/2011/01/keep-your-opt-outs.

html.

[25] Google Will Pay $22.5 Million to Settle FTC Charges it Misrepre-

sented Privacy Assurances to Users of Apple’s Safari Internet Browser.

http://www.ftc.gov/news-events/press-releases/2012/08/

google-will-pay-225-million-settle-ftc-charges-it-misrepresented.

[26] grindtv.com Site Overview. http://www.alexa.com/siteinfo/grindtv.

com. July 10, 2015.

[27] Grindtv.com Traffic and Demographic Statistics by Quantast. https://www.

quantcast.com/grindtv.com/demographics/web. July 10, 2015.

[28] Home of the Webalizer. http://www.webalizer.org/.

[29] Internet Explorer 9 Tracking Protection Lists. http://ie.microsoft.com/

testdrive/Browser/TrackingProtectionLists/faq.html.

[30] Internet of Things - Cisco Systems. http://www.cisco.com/web/

solutions/trends/iot/overview.html.

[31] iPage Web Hosting. http://www.ipage.com.

[32] Jawbones New Wristband Adds You to the Internet of

Things. http://www.technologyreview.com/news/521606/

jawbones-new-wristband-adds-you-to-the-internet-of-things/.

[33] Lawsuit accuses comScore of extensive privacy violations. http:

//www.computerworld.com/s/article/9219444/Lawsuit_accuses_

comScore_of_extensive_privacy_violations.

165

http://googlepublicpolicy.blogspot.com/2011/01/keep-your-opt-outs.html
http://googlepublicpolicy.blogspot.com/2011/01/keep-your-opt-outs.html
http://googlepublicpolicy.blogspot.com/2011/01/keep-your-opt-outs.html
 http://www.ftc.gov/news-events/press-releases/2012/08/google-will-pay-225-million-settle-ftc-charges -it-misrepresented
 http://www.ftc.gov/news-events/press-releases/2012/08/google-will-pay-225-million-settle-ftc-charges -it-misrepresented
http://www.alexa.com/siteinfo/grindtv.com
http://www.alexa.com/siteinfo/grindtv.com
https://www.quantcast.com/grindtv.com/demographics/web
https://www.quantcast.com/grindtv.com/demographics/web
http://www.webalizer.org/
http://ie.microsoft.com/testdrive/Browser/TrackingProtectionLists/faq.html
http://ie.microsoft.com/testdrive/Browser/TrackingProtectionLists/faq.html
http://www.cisco.com/web/solutions/trends/iot/overview.html
http://www.cisco.com/web/solutions/trends/iot/overview.html
http://www.ipage.com
 http://www.technologyreview.com/news/521606/jawbones-new-wristband-adds-you-to-the-internet-of-thing s/
 http://www.technologyreview.com/news/521606/jawbones-new-wristband-adds-you-to-the-internet-of-thing s/
 http://www.computerworld.com/s/article/9219444/Lawsuit_accuses_comScore_of_extensive_privacy_v iolations
 http://www.computerworld.com/s/article/9219444/Lawsuit_accuses_comScore_of_extensive_privacy_v iolations
 http://www.computerworld.com/s/article/9219444/Lawsuit_accuses_comScore_of_extensive_privacy_v iolations

[34] Lightbeam Firefox Add-on. https://addons.mozilla.org/en-US/

firefox/addon/lightbeam/.

[35] Localytics Mobile App Marketing and App Analytics Blog. http://www.

localytics.com/.

[36] Mint Analytics. http://haveamint.com/.

[37] Mobclix: Mobile Application Store offers the Best Iphone Apps & Solutions. http:

//www.mobclix.com/.

[38] Mobile App Analytics - Google Analytics. https://www.google.com/

analytics/mobile/.

[39] mod alias - Apache HTTP Server Version 2.2. https://httpd.apache.org/

docs/2.2/mod/mod_alias.html.

[40] Open Web Analytics. http://openwebanalytics.com.

[41] Piwik Web Analytics. http://piwik.org.

[42] Piwik Web Hosting. http://www.arvixe.com/piwik_hosting.

[43] Priv3 Firefox Add-on. https://addons.mozilla.org/en-US/firefox/

addon/priv3/.

[44] Priv3+ Firefox Add-on. https://addons.mozilla.org/en-US/firefox/

addon/priv3plus/.

[45] Priv3+ Google Chrome Extension. https://chrome.google.com/

webstore/detail/priv3%20/oigbhpafgooddcnlapndedpakbgpopoc.

[46] Privacy Badger — Electronic Frontier Foundation. https://www.eff.org/

privacybadger.

166

https://addons.mozilla.org/en-US/firefox/addon/lightbeam/
https://addons.mozilla.org/en-US/firefox/addon/lightbeam/
http://www.localytics.com/
http://www.localytics.com/
http://haveamint.com/
http://www.mobclix.com/
http://www.mobclix.com/
https://www.google.com/analytics/mobile/
https://www.google.com/analytics/mobile/
https://httpd.apache.org/docs/2.2/mod/mod_alias.html
https://httpd.apache.org/docs/2.2/mod/mod_alias.html
http://openwebanalytics.com
http://piwik.org
http://www.arvixe.com/piwik_hosting
https://addons.mozilla.org/en-US/firefox/addon/priv3/
https://addons.mozilla.org/en-US/firefox/addon/priv3/
https://addons.mozilla.org/en-US/firefox/addon/priv3plus/
https://addons.mozilla.org/en-US/firefox/addon/priv3plus/
https://chrome.google.com/webstore/detail/priv3%20/oigbhpafgooddcnlapndedpakbgpopoc
https://chrome.google.com/webstore/detail/priv3%20/oigbhpafgooddcnlapndedpakbgpopoc
https://www.eff.org/privacybadger
https://www.eff.org/privacybadger

[47] Privacy Lawsuit Targets Net Giants Over ‘Zombie’ Cookies. http://www.wired.

com/threatlevel/2010/07/zombie-cookies-lawsuit.

[48] ProVerif. http://proverif.inria.fr/.

[49] Quantcast Clearspring Flash Cookie Class Action Settlement. http://www.

topclassactions.com/lawsuit-settlements/lawsuit-news/920.

[50] Quantcast Opt-Out. http://www.quantcast.com/how-we-do-it/

consumer-choice/opt-out/.

[51] Quantcast Top Ranking International Websites. https://www.quantcast.

com/top-sites.

[52] Safari Adds Do Not Track Features. http://mashable.com/2011/04/14/

safari-do-not-track.

[53] ShareMeNot Firefox Add-on. https://addons.mozilla.org/en-US/

firefox/addon/sharemenot/.

[54] SmartThings — Smart Home. Intelligent Living. http://www.smartthings.

com/.

[55] The Do Not Track Option: Giving Consumers a Choice. http://www.ftc.gov/

opa/reporter/privacy/donottrack.shtml.

[56] The hidden perils of cookie syncing. https://freedom-to-tinker.com/

blog/englehardt/the-hidden-perils-of-cookie-syncing/.

[57] The Mozilla Blog — Mozilla Firefox 4 Beta, now including “Do Not Track” capa-

bilities. http://blog.mozilla.com/blog/2011/02/08.

[58] The scattered, futuristic world of home automation. http://edition.cnn.

com/2013/01/12/tech/innovation/future-home-automation/.

167

http://www.wired.com/threatlevel/2010/07/zombie-cookies-lawsuit
http://www.wired.com/threatlevel/2010/07/zombie-cookies-lawsuit
http://proverif.inria.fr/
http://www.topclassactions.com/lawsuit-settlements/lawsuit-news/920
http://www.topclassactions.com/lawsuit-settlements/lawsuit-news/920
http://www.quantcast.com/how-we-do-it/consumer-choice/opt-out/
http://www.quantcast.com/how-we-do-it/consumer-choice/opt-out/
https://www.quantcast.com/top-sites
https://www.quantcast.com/top-sites
http://mashable.com/2011/04/14/safari-do-not-track
http://mashable.com/2011/04/14/safari-do-not-track
https://addons.mozilla.org/en-US/firefox/addon/sharemenot/
https://addons.mozilla.org/en-US/firefox/addon/sharemenot/
http://www.smartthings.com/
http://www.smartthings.com/
http://www.ftc.gov/opa/reporter/privacy/donottrack.shtml
http://www.ftc.gov/opa/reporter/privacy/donottrack.shtml
https://freedom-to-tinker.com/blog/englehardt/the-hidden-perils-of-cookie-syncing/
https://freedom-to-tinker.com/blog/englehardt/the-hidden-perils-of-cookie-syncing/
http://blog.mozilla.com/blog/2011/02/08
http://edition.cnn.com/2013/01/12/tech/innovation/future-home-automation/
http://edition.cnn.com/2013/01/12/tech/innovation/future-home-automation/

[59] Tor Project. https://www.torproject.org/.

[60] Toymail - Keeping families connected without more screen time. http://www.

toymail.co/.

[61] Tracking Protection on Firefox. https://support.mozilla.org/en-US/kb/

tracking-protection-firefox.

[62] Usage Statistics and Market Share of Traffic Analysis Tools. http://w3techs.

com/technologies/overview/traffic_analysis/all. Aug 2, 2012.

[63] User Personalization Update. https://blog.mozilla.org/labs/2013/12/

user-personalization-update/.

[64] usnews.com Site Overview. http://www.alexa.com/siteinfo/usnews.

com. July 10, 2015.

[65] Usnews.com Traffic and Demographic Statistics by Quantast. https://www.

quantcast.com/usnews.com/demographics/web. July 10, 2015.

[66] W3 - BlueKai Proposal for Browser Based Do-Not-Track Functionality. http:

//www.w3.org/2011/track-privacy/papers/BlueKai.pdf.

[67] W3Perl Free Log File Analyzer. http://www.w3perl.com.

[68] Web Tracking Protection. http://www.w3.org/Submission/

web-tracking-protection/.

[69] Widget Technologies Web Usage Statistics. http://trends.builtwith.com/

widgets.

[70] Abine. http://www.abine.com/, last access on October 8, 2014.

[71] ComScore: Mobile Will Force Desktop Into Its Twi-

light In 2014. http://www.businessinsider.com/

168

https://www.torproject.org/
http://www.toymail.co/
http://www.toymail.co/
https://support.mozilla.org/en-US/kb/tracking-protection-firefox
https://support.mozilla.org/en-US/kb/tracking-protection-firefox
http://w3techs.com/technologies/overview/traffic_analysis/all
http://w3techs.com/technologies/overview/traffic_analysis/all
https://blog.mozilla.org/labs/2013/12/user-personalization-update/
https://blog.mozilla.org/labs/2013/12/user-personalization-update/
http://www.alexa.com/siteinfo/usnews.com
http://www.alexa.com/siteinfo/usnews.com
https://www.quantcast.com/usnews.com/demographics/web
https://www.quantcast.com/usnews.com/demographics/web
http://www.w3.org/2011/track-privacy/papers/BlueKai.pdf
http://www.w3.org/2011/track-privacy/papers/BlueKai.pdf
http://www.w3perl.com
http://www.w3.org/Submission/web-tracking-protection/
http://www.w3.org/Submission/web-tracking-protection/
http://trends.builtwith.com/widgets
http://trends.builtwith.com/widgets
http://www.abine.com/
http://www.businessinsider.com/mobile-will-eclipse-desktop-by-2014-2012-6
http://www.businessinsider.com/mobile-will-eclipse-desktop-by-2014-2012-6
http://www.businessinsider.com/mobile-will-eclipse-desktop-by-2014-2012-6

mobile-will-eclipse-desktop-by-2014-2012-6, last access on Oc-

tober 8, 2014.

[72] Internet Access Statistics. http://www.ons.gov.uk/ons/dcp171778_

301822.pdf, last access on October 8, 2014.

[73] Mobile Internet traffic gaining fast on desktop Internet traffic. http://news.

cnet.com/8301-1023_3-57556943-93/, last access on October 8, 2014.

[74] Martı́n Abadi and Cédric Fournet. Mobile Values, New Names, and Secure

Communication. In POPL, 2001.

[75] Masayuki Abe and Eiichiro Fujisaki. How to date blind signatures. In Advances in

Cryptology - ASIACRYPT ’96, International Conference on the Theory and Applications of

Cryptology and Information Security, Kyongju, Korea, November 3-7, 1996, Proceedings,

1996.

[76] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind

Narayanan, and Claudia Diaz. The Web never forgets: Persistent tracking mecha-

nisms in the wild. In Proceedings of the 2014 ACM SIGSAC Conference on Computer

and Communications Security, pages 674–689. ACM, 2014.

[77] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses, Frank

Piessens, and Bart Preneel. FPDetective: Dusting the web for fingerprinters. In

Proceedings of the 2013 ACM SIGSAC conference on Computer & communications

security, pages 1129–1140. ACM, 2013.

[78] Esma Aı̈meur, Gilles Brassard, José M Fernandez, and Flavien Serge Mani Onana.

Alambic: a privacy-preserving recommender system for electronic commerce.

International Journal of Information Security, 7(5):307–334, 2008.

169

http://www.businessinsider.com/mobile-will-eclipse-desktop-by-2014-2012-6
http://www.businessinsider.com/mobile-will-eclipse-desktop-by-2014-2012-6
http://www.businessinsider.com/mobile-will-eclipse-desktop-by-2014-2012-6
http://www.ons.gov.uk/ons/dcp171778_301822.pdf
http://www.ons.gov.uk/ons/dcp171778_301822.pdf
 http://news.cnet.com/8301-1023_3-57556943-93/
 http://news.cnet.com/8301-1023_3-57556943-93/

[79] Istemi Ekin Akkus. Formal Model and Verification of Privacy-preserving String

Discovery for Mobile and Web Analytics. In Max Planck Institute for Software

Systems Technical Report MPI-SWS-2014-006, 2014.

[80] Istemi Ekin Akkus, Ruichuan Chen, and Paul Francis. String Discovery for Private

Analytics. In Max Planck Institute for Software Systems Technical Report MPI-SWS-

2013-006, 2013.

[81] Istemi Ekin Akkus, Ruichuan Chen, Michaela Hardt, Paul Francis, and Johannes

Gehrke. Non-tracking Web Analytics. In CCS, 2012.

[82] Istemi Ekin Akkus and Nicholas Weaver. The Case for a General and Interaction-

based Third-party Cookie Policy. In Proceedings of the IEEE Workshop on Web 2.0

Security and Privacy (W2SP), 2015.

[83] Benny Applebaum, Haakon Ringberg, Michael J. Freedman, Matthew Caesar, and

Jennifer Rexford. Collaborative, Privacy-Preserving Data Aggregation at Scale. In

PETS, 2010.

[84] Michael Backes, Aniket Kate, Matteo Maffei, and Kim Pecina. ObliviAd: Provably

Secure and Practical Online Behavioral Advertising. In IEEE Symposium on Security

and Privacy, 2012.

[85] Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank McSherry,

and Kunal Talwar. Privacy, accuracy, and consistency too: a holistic solution to

contingency table release. In PODS, 2007.

[86] Anirban Basu, Jaideep Vaidya, and Hiroaki Kikuchi. Efficient privacy-preserving

collaborative filtering based on the weighted slope one predictor. Journal of Internet

Services and Information Security (JISIS), 1(4):26–46, 2011.

170

[87] Arnar Birgisson, Frank McSherry, and Martı́n Abadi. Differential privacy with

information flow control. In PLAS, 2011.

[88] Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors.

Communications of the ACM, 13:422–426, 1970.

[89] Martin Burkhart and Xenofontas A. Dimitropoulos. Fast Privacy-Preserving Top-k

Queries Using Secret Sharing. In ICCCN, 2010.

[90] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas A. Dimitropoulos.

SEPIA: Privacy-Preserving Aggregation of Multi-Domain Network Events and

Statistics. In USENIX Security Symposium, 2010.

[91] Tianjie Cao, Dongdai Lin, and Rui Xue. A Randomized RSA-based Partially Blind

Signature Scheme for Electronic Cash. Computers & Security, 24(1), 2005.

[92] Henry Carter, Benjamin Mood, Patrick Traynor, and Kevin Butler. Secure Out-

sourced Garbled Circuit Evaluation for Mobile Devices. In USENIX Security

Symposium, 2013.

[93] T.-H. Hubert Chan, Mingfei Li, Elaine Shi, and Wenchang Xu. Differentially Private

Continual Monitoring of Heavy Hitters from Distributed Streams. In PETS, 2012.

[94] David Chaum. The Dining Cryptographers Problem: Unconditional Sender and

Recipient Untraceability. J. Cryptology, 1(1):65–75, 1988.

[95] David L. Chaum. Blind Signatures for Untraceable Payments. Advances in Cryptol-

ogy (CRYPTO), 1982.

[96] Rui Chen, Gergely Ács, and Claude Castelluccia. Differentially private sequential

data publication via variable-length n-grams. In CCS, 2012.

171

[97] Ruichuan Chen, Istemi Ekin Akkus, and Paul Francis. SplitX: High-Performance

Private Analytics. In Proceedings of the ACM Special Interest Group on Data Commu-

nication (SIGCOMM), 2013.

[98] Ruichuan Chen, Alexey Reznichenko, Paul Francis, and Johannes Gehrke. Towards

Statistical Queries over Distributed Private User Data. In USENIX Symposium on

Networked Systems Design and Implementation (NSDI), 2012.

[99] Sherman S. M. Chow, Jie-Han Lee, and Lakshminarayanan Subramanian. Two-

Party Computation Model for Privacy-Preserving Queries over Distributed

Databases. In Network and Distributed System Security (NDSS) Symposium, 2009.

[100] Mohan Dhawan, Christian Kreibich, and Nicholas Weaver. Priv3: A third party

cookie policy. In W3C Workshop: Do Not Track and Beyond, 2012.

[101] Yitao Duan, John Canny, and Justin Z. Zhan. P4P: Practical Large-Scale Privacy-

Preserving Distributed Computation Robust against Malicious Users. In USENIX

Security Symposium, pages 207–222, 2010.

[102] Cynthia Dwork. Differential Privacy. In ICALP, 2006.

[103] Cynthia Dwork. Differential Privacy: A Survey of Results. In TAMC, pages 1–19,

2008.

[104] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and

Moni Naor. Our Data, Ourselves: Privacy Via Distributed Noise Generation. In

EUROCRYPT, pages 486–503, 2006.

[105] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating

Noise to Sensitivity in Private Data Analysis. In TCC, pages 265–284, 2006.

[106] Peter Eckersley. How unique is your web browser? In Privacy Enhancing Technolo-

gies, 2010.

172

[107] Steven Englehardt, Dillon Reisman, Christian Eubank, Peter Zimmerman,

Jonathan Mayer, Arvind Narayanan, and Edward W Felten. Cookies that give

you away: The surveillance implications of web tracking. In Proceedings of the 24th

International Conference on World Wide Web, 2015.

[108] Zekeriya Erkin, Michael Beye, Thijs Veugen, and Reginald L Lagendijk. Efficiently

computing private recommendations. In Acoustics, Speech and Signal Processing

(ICASSP), 2011 IEEE International Conference on, pages 5864–5867. IEEE, 2011.

[109] Ùlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. RAPPOR: Randomized

Aggregatable Privacy-Preserving Ordinal Response. In CCS, 2014.

[110] Ziba Eslami and Mehdi Talebi. A New Untraceable Off-line Electronic Cash

System. Electronic Commerce Research and Applications, 10(1):59–66, 2011.

[111] Amin FaizKhademi, Mohammad Zulkernine, and Komminist Weldemariam. FP-

Guard: Detection and Prevention of Browser Fingerprinting. In Data and Applica-

tions Security and Privacy XXIX, pages 293–308. Springer, 2015.

[112] Arik Friedman, Izchak Sharfman, Daniel Keren, and Assaf Schuster. Privacy-

Preserving Distributed Stream Monitoring. In Network and Distributed System

Security (NDSS) Symposium, 2014.

[113] Benjamin C. M. Fung, Ke Wang, Rui Chen, and Philip S. Yu. Privacy-preserving

data publishing: A survey of recent developments. ACM Comput. Surv., 42(4),

2010.

[114] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity

of interactive proof systems. SIAM Journal on computing, 18(1):186–208, 1989.

[115] Saikat Guha, Bin Cheng, and Paul Francis. Privad: Practical Privacy in Online Ad-

vertising. In USENIX Symposium on Networked Systems Design and Implementation

173

(NSDI), 2011.

[116] Saikat Guha, Mudit Jain, and Venkata N Padmanabhan. Koi: A location-privacy

platform for smartphone apps. In USENIX Symposium on Networked Systems Design

and Implementation (NSDI), 2012.

[117] Michaela Hardt and Suman Nath. Privacy-aware personalization for mobile

advertising. In CCS, 2012.

[118] Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. Boosting the

accuracy of differentially private histograms through consistency. Proc. VLDB

Endow., 3(1-2), September 2010.

[119] Justin Hsu, Sanjeev Khanna, and Aaron Roth. Distributed Private Heavy Hitters.

In ICALP, 2012.

[120] Yan Huang, Peter Chapman, and David Evans. Privacy-preserving applications

on smartphones. USENIX Workshop on Hot Topics in Security, 2011.

[121] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster Secure Two-Party

Computation Using Garbled Circuits. USENIX Security Symposium, 2011.

[122] Sachin Katti, Jeff Cohen, and Dina Katabi. Information Slicing: Anonymity Using

Unreliable Overlays. In USENIX Symposium on Networked Systems Design and

Implementation (NSDI), 2007.

[123] Georgios Kontaxis and Monica Chew. Tracking protection in firefox for privacy

and performance. In Proceedings of the IEEE Workshop on Web 2.0 Security and

Privacy (W2SP), 2015.

[124] Georgios Kontaxis, Michalis Polychronakis, Angelos D Keromytis, and Evan-

gelos P Markatos. Privacy-preserving social plugins. In Proceedings of the 21st

USENIX Security Symposium), 2012.

174

[125] Aleksandra Korolova, Krishnaram Kenthapadi, Nina Mishra, and Alexandros

Ntoulas. Releasing search queries and clicks privately. In WWW, pages 171–180,

2009.

[126] Abhishek Kumar and Jun Xu. Sketch Guided Sampling-Using On-Line Estimates

of Flow Size for Adaptive Data Collection. In INFOCOM, 2006.

[127] Ralf Küsters and Tomasz Truderung. Reducing Protocol Analysis with XOR to the

XOR-free Case in the Horn Theory Based Approach. In CCS, 2008.

[128] Sangmin Lee, Edmund L Wong, Deepak Goel, Mike Dahlin, and Vitaly Shmatikov.

πBox: a platform for privacy-preserving apps. In USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 2013.

[129] Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthuramakrish-

nan Venkitasubramaniam. l-Diversity: Privacy Beyond k-Anonymity. In ICDE,

page 24, 2006.

[130] Gurmeet Singh Manku and Rajeev Motwani. Approximate Frequency Counts

over Data Streams. In VLDB, 2002.

[131] Jonathan R Mayer. Any person... a pamphleteer. Senior Thesis, Stanford University,

2009.

[132] Frank McSherry and Ratul Mahajan. Differentially-private network trace analysis.

In SIGCOMM, pages 123–134, 2010.

[133] Frank D. McSherry. Privacy integrated queries: an extensible platform for privacy-

preserving data analysis. In Proceedings of the 35th SIGMOD international conference

on Management of data, SIGMOD ’09, 2009.

[134] Robin Milner. Communicating and mobile systems: the pi calculus. Cambridge

university press, 1999.

175

[135] Animesh Nandi, Armen Aghasaryan, and Makram Bouzid. P3: A Privacy Preserv-

ing Personalization Middleware for Recommendation-based Services. In HotPETS,

2011.

[136] Nick Nikiforakis, Wouter Joosen, and Benjamin Livshits. Privaricator: Deceiving

fingerprinters with little white lies. In Proceedings of the 24th International Conference

on World Wide Web (WWW), 2015.

[137] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher Kruegel,

Frank Piessens, and Giovanni Vigna. Cookieless monster: Exploring the ecosys-

tem of web-based device fingerprinting. In Security and Privacy (SP), 2013 IEEE

Symposium on. IEEE, 2013.

[138] Xiang Pan, Yinzhi Cao, and Yan Chen. I do not know what you visited last summer:

Protecting users from third-party web tracking with trackingfree browser. In

Network and Distributed System Security (NDSS) Symposium, 2015.

[139] Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakr-

ishnan. CryptDB: protecting confidentiality with encrypted query processing. In

SOSP, 2011.

[140] Krishna P. N. Puttaswamy, Ranjita Bhagwan, and Venkata N. Padmanabhan.

Anonygator: Privacy and Integrity Preserving Data Aggregation. In International

Conference on Middleware, 2010.

[141] Michael O Rabin. How to exchange secrets by oblivious transfer. Technical report,

TR-81, Harvard Aiken Computation Laboratory, 1981.

[142] Vibhor Rastogi and Suman Nath. Differentially private aggregation of distributed

time-series with transformation and encryption. In SIGMOD Conference, pages

735–746, 2010.

176

[143] Alexey Reznichenko and Paul Francis. Private-by-Design Advertising Meets the

Real World. In CCS, 2014.

[144] Franziska Roesner, Tadayoshi Kohno, and David Wetherall. Detecting and Defend-

ing Against Third-Party Tracking on the Web. In USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 2012.

[145] A. Sabelfeld and A.C. Myers. Language-based information-flow security. Selected

Areas in Communications, IEEE Journal on, 21(1), 2003.

[146] Elaine Shi, John Bethencourt, Hubert T.-H. Chan, Dawn Xiaodong Song, and

Adrian Perrig. Multi-Dimensional Range Query over Encrypted Data. In IEEE

Symposium on Security and Privacy, 2007.

[147] Elaine Shi, T.-H. Hubert Chan, Eleanor G. Rieffel, Richard Chow, and Dawn Song.

Privacy-Preserving Aggregation of Time-Series Data. In Network and Distributed

System Security (NDSS) Symposium, 2011.

[148] Emin Gün Sirer, Sharad Goel, Mark Robson, and Dogan Engin. Eluding carnivores:

file sharing with strong anonymity. In ACM SIGOPS European Workshop, 2004.

[149] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical Techniques for

Searches on Encrypted Data. In IEEE Symposium on Security and Privacy, 2000.

[150] Latanya Sweeney. k-Anonymity: A Model for Protecting Privacy. International

Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557–570, 2002.

[151] Vincent Toubiana, Arvind Narayanan, Dan Boneh, Helen Nissenbaum, and Solon

Barocas. Adnostic: Privacy preserving targeted advertising. In Network and

Distributed System Security (NDSS) Symposium, 2010.

[152] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson.

Dissent in Numbers: Making Strong Anonymity Scale. In OSDI, 2012.

177

[153] Haiquan Zhao, Ashwin Lall, Mitsunori Ogihara, and Jun Xu. Global iceberg

detection over distributed data streams. In ICDE, 2010.

[154] Qi (George) Zhao, Mitsunori Ogihara, Haixun Wang, and Jun (Jim) Xu. Finding

Global Icebergs over Distributed Data Sets. In Principles of Database Systems, 2006.

178

İstemi Ekin Akkuş

https://www.mpi-sws.org/∼iakkus

Computer Networks, Distributed Systems, PrivacyInterests

Max Planck Institute for Software Systems,Education
Kaiserslautern and Saarbruecken, Germany Sep 2010 - Sep 2015

Doctoral Student, Computer Science

• Max Planck Institute Scholarship recipient
• Advisor: Professor Paul Francis

University of Toronto, Toronto, Ontario, Canada Sep 2007 - Sep 2009
Master of Applied Science, Electrical and Computer Engineering

• University of Toronto Fellowship recipient
• Thesis Title: Data Recovery for Web Applications
• Advisor: Professor Ashvin Goel
• Overall GPA: 3.90/4.0

Koç University, İstanbul, Turkey Sep 2005 - Aug 2007
Master of Science, Electrical and Computer Engineering

• Merit Scholarship recipient
• Thesis Title: Peer-to-peer Multipoint Video Conferencing Using Lay-

ered Video
• Advisors: Professor M. Reha Civanlar and Professor Öznur Özkasap
• Overall GPA: 3.96/4.0; 1st in class

Koç University, İstanbul, Turkey Sep 2000 - Jun 2005
Bachelor of Science, Mechanical Engineering
Bachelor of Science, Computer Engineering

• Merit Scholarship recipient
• Double Major; graduated with Honors

İstanbul (Erkek) Lisesi, İstanbul, Turkey 1992 - 2000
• Language of Instruction: German
• Overall GPA: 4.85/5.0

Max Planck Institute for Software Systems, Kaiserslautern, GermanyResearch
Experience Research Assistant Sep 2010 - Sep 2015

• Worked on design and implementation of large-scale distributed sys-
tems focusing on privacy.

• Dissertation Title: Towards a Non-tracking Web

International Computer Science Institute (ICSI), Berkeley, CA
Visiting Researcher March 2014 - July 2014

• Designed and developed Priv3+, a Firefox add-on that enables users
to control the amount of tracking by any third-party (including social

179

widgets and behavioral targeting cookies) with a general cookie policy
without requiring a pre-defined blacklist. Supervised by Dr. Nicholas
Weaver.

Microsoft Research India, Bangalore, India
Research Intern July 2012 - Sep 2012

• Worked on the design of a privacy-preserving, non-cloud digital as-
sistant/ recommendation system to infer user intent regarding email
content and present users with suggestions. Supervised by Dr. Saikat
Guha.

University of Toronto, Toronto, Ontario Canada
Research Assistant Sep 2007 - Sep 2009

• Designed and developed a generic data recovery system for web ap-
plications. Advised by Prof. Ashvin Goel.

• Responsible for maintaining over 100 server machines.

Teaching Assistant Sep 2008 - May 2009

• Head TA for Computer Security and Operating Systems courses.

Koç University, Graduate School of Sciences and Engineering, İstanbul,
Turkey

Research Assistant Sep 2005 - Aug 2007

• Worked on peer-to-peer multipoint video conferencing. Advised by
Prof. M. Reha Civanlar and Prof. Öznur Özkasap.

Teaching Assistant Sep 2005 - Aug 2007

• Computer Networks, Operating Systems and Distributed Computing
Systems courses.

Koç University, Rahmi Koç College of Engineering, İstanbul, Turkey
Undergraduate Researcher Feb 2001 - Jul 2005

• Conducted research on various multicast protocols using Network
Simulator (ns-2). Supervised by Prof. Öznur Özkasap. (Feb 2003 -
Jul 2005)

JournalPublications

1. Istemi Ekin Akkus, Öznur Özkasap, M. Reha Civanlar. Peer-to-peer
Multipoint Video Conferencing with Layered Video. Journal of Network
and Computer Applications, Volume 34, Issue 1, January 2011, pp. 137-
150.

International Conferences & Workshops

180

1. Istemi Ekin Akkus, Nicholas Weaver. The Case for a General and
Interaction-based Third-party Cookie Policy. IEEE Workshop on Web
2.0 Security and Privacy, W2SP2015, San Jose, CA, USA, May 21, 2015.

2. Ruichuan Chen, Istemi Ekin Akkus, Paul Francis. SplitX: High-
performance Private Analytics. Proceedings of the ACM Special Interest
Group on Data Communication, SIGCOMM13, Hong Kong, China, Au-
gust 12-16, 2013.

3. Istemi Ekin Akkus, Ruichuan Chen, Michaela Hardt, Paul Francis,
Johannes Gehrke. Non-tracking Web Analytics. Proceedings of the 19th
ACM Conference on Computer and Communications Security, CCS’12,
Raleigh, NC, USA, October 16-18, 2012.

4. Pramod Bhatotia, Alexander Wieder, Istemi Ekin Akkus, Rodrigo
Rodrigues, Umut A. Acar. Large-scale Incremental Data Processing with
Change Propagation. 3rd USENIX Workshop on Hot Topics in Cloud
Computing, HotCloud’11, Portland, OR, USA, June 14-15, 2011.

5. Istemi Ekin Akkus, Ashvin Goel. Data Recovery for Web Applica-
tions. Proceedings of the 40th IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN2010, Chicago, IL, USA, June
28-July 1, 2010.

6. Istemi Ekin Akkus, Öznur Ozkasap, M. Reha Civanlar. Multi-objective
Optimization for Peer-to-Peer Multipoint Video Conferencing Using Lay-
ered Video. Proceedings of the 16th International Packet Video Work-
shop, PV2007, Lausanne, Switzerland, November 12-13 2007.

7. Istemi Ekin Akkus, M. Reha Civanlar, Öznur Özkasap. Peer-to-peer
Multipoint Video Conferencing Using Layered Video. Proceedings of the
IEEE International Conference on Image Processing, ICIP2006, Atlanta,
GA, USA, October 8-11 2006.

8. Istemi Ekin Akkus, Öznur Özkasap, M. Reha Civanlar. Secure Trans-
mission of Video on an End System Multicast using Public Key Cryp-
tography. International Workshop on Multimedia, Representation and
Security, MRCS2006, İstanbul, Turkey, Sep 11-13 2006. Lecture Notes
in Computer Science, vol. 4105, pp. 603-610, Springer-Verlag Heidel-
berg.

Technical Reports

1. Istemi Ekin Akkus. Formal Model and Verification of Privacy-preserving
String Discovery for Mobile and Web Analytics. Technical Report MPI-
SWS-2014-006, 2014.

2. Istemi Ekin Akkus, Ruichuan Chen, Paul Francis. String Discovery
for Private Analytics. Technical Report MPI-SWS-2013-006, 2013.

181

Languages: Turkish (native), English (fluent), German (good), Italian (be-Skills
ginner)
Programming: C, Java, JavaScript, PHP, Python, UNIX Shell scripting,
SQL
Operating Systems: UNIX, Linux, Mac OS X, MS Windows, DOS

Honors &
Awards

• Max Planck Institute scholarship recipient (2010 - 2015)
• University of Toronto fellowship recipient (2007 - 2009)
• Vehbi Koç Foundation - Grant for Graduate study abroad (2007)
• The Scientific and Technological Research Council of Turkey (TUBITAK)

Scholarship to support M.S. Thesis (2005 - 2007)
• Vehbi Koç Scholarship for graduate study, Koç University, covering tuition

and monthly stipend (2005 - 2007)
• Vehbi Koç Scholarship for undergraduate study, Koç University, covering

tuition, dormitory expenses and monthly stipend (2000 - 2005)
• Vehbi Koç Scholar High Honors List (once), Dean’s Honor List (3 times),

Koç University, (2000 - 2005)
• İstanbul Erkek Liseliler Vakfı, Alumni Foundation Scholarship for success

in High School (1995 - 2000)

Professional
Activities

• IEEE Student member
• ACM Student member

Extra-
curricular
Activities

• Two times intramural tournament champion (Basketball, Coed Div 2) at
the University of Toronto (Fall 2007, Winter 2008)

• Organized charity events at Koç University for people with disabilities and
children with leukemia (2003, 2004)

• Organization committee of Koç University Drama Festival (2003, 2004)
• Organization committee of Koç University International Debate Tourna-

ment (2002, 2003)

Personal • Hobbies: Photography, rock climbing, running, cycling, basketball

Available upon request.References

182

	List of Figures
	List of Tables
	Introduction
	An Evolving Web
	Essential Web Services & Third-party Tracking
	Thesis Research & Contributions: Non-tracking Web Systems
	Organization

	A General and Interaction-based Third-party Cookie Policy
	Introduction
	Contributions
	Goals
	Assumptions
	Design
	Detecting Third-party Requests & Removing Cookies
	Click as User Interaction and Reload-on-click
	Two-click Control for Social Widgets
	Generalization
	Social Widgets versus Advertisements
	Third-party Cookie Access
	Limitations

	Implementation
	Evaluation
	Methodology
	Efficacy of the Heuristic
	Performance Overhead

	Discussion
	Robustness of the Heuristic
	Reloading Advertisement Iframes with Cookies
	Evercookies
	Cookie Synching
	Behavioral Advertisements & Extended Web Analytics

	Conclusion & Future Work

	Non-tracking Web Analytics
	Introduction
	Contributions
	Definitions & Components
	Goals
	Functionality Goals
	Privacy Goals

	Assumptions
	Client
	Data Aggregator
	Publisher
	Incentives

	System Overview
	Audits

	Design
	Differential Privacy Background
	Queries
	Query Response
	Audit Response
	Noise Generation

	Analysis
	Data Aggregator
	Publisher
	Client

	Implementation & Evaluation
	Implementation
	Example Scenario
	Deployment

	Conclusion & Future Work

	Privacy-preserving String Discovery
	Introduction
	Background: Privacy-preserving Analytics Systems

	Contributions
	Definitions & Components
	Goals
	Privacy Goals
	Functionality Goals

	Assumptions
	SplitX
	Client
	Aggregator & Proxies
	String Values

	System Overview
	Building Blocks
	XOR-Encryption: Split & Join
	Blind Comparison via pairwise-XOR and hash (PXH)
	Noisy Threshold

	Design
	Initializing String Discovery
	Collecting Encrypted Strings
	Blindly Comparing & Counting Strings
	Mirror Operation & Oblivious Noise
	Other Details

	Optimizations
	Sample-Identify-Count-Filter (SICF)
	Short Hashes

	Detecting Duplicates
	Analysis
	Tools
	Modeling Primitives
	Protocol Model & Verification Results
	Informal Analysis of the Remaining Protocol

	Evaluation
	Datasets
	Benefits of Optimizations
	Microbenchmarks
	Experiments with Real-world Data

	Conclusion & Future Work

	Literature Survey
	Third-party Tracking
	Web Analytics
	Privacy-preserving String Discovery

	Summary & Final Remarks
	Bibliography
	Curriculum Vitae

