
Secure Transmission of Video on an End System

Multicast Using Public Key Cryptography�

Istemi Ekin Akkus, Oznur Ozkasap, and M. Reha Civanlar

Koc University, Department of Computer Engineering,
Istanbul, Turkey

{iakkus, oozkasap, rcivanlar}@ku.edu.tr
http://ndsl.ku.edu.tr

Abstract. An approach for securing video transmission on an end sys-
tem multicast session is described. Existing solutions use encryption
techniques that require the use of a shared key. Although they can
achieve efficient encryption/decryption and meet the demands of real-
time video, a publicly available service needing only the integrity and
non-repudiation of the message is not considered. In this study, we offer
such a method using public key cryptography. This method can be used
in an end system multicast infrastructure where video originates from one
source, but spreads with the help of receiving peers. Two different meth-
ods are described and compared: 1) Encryption of the entire packet. 2)
Encryption of the unique digest value of the transmitted packet (i.e.
digitally signing). The receivers then check the integrity of the received
packets using the public key provided by the sender. Also, this way the
non-repudiation of the transmitted video is provided.

1 Introduction

End System Multicast (ESM) is one of the most effective ways for distributing
data where the network infrastructure does not support native multicasting.
An implementation of ESM is given in [1]. The described structure, NARADA,
employs the approach in which data is distributed using end systems where each
end system forwards the received data to other end systems in a hierarchical
scheme. This way, multicasting burdens shift from the routers to the end systems,
enabling a scalable multicasting solution. Although with this approach some
physical links may have to carry packets more than once and an overhead is
introduced, this is acceptable considering the benefit gained. Besides, the end
systems are also organized in such a way that the overhead is minimized.

One of the significant areas that ESM can be utilized is video streaming. Cur-
rent IETF meetings employ this mechanism. These meetings can be watched
freely by joining the system and participating with own resources and band-
width, which is the main reason why the system is scalable. In the peer-to-peer
architecture described in [2] and [3] for multipoint video conferencing, the video
� This work is supported in part by TUBITAK (The Scientific and Technical Research

Council of Turkey) under CAREER Award Grant 104E064.

B. Gunsel et al. (Eds.): MRCS 2006, LNCS 4105, pp. 603–610, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

604 I.E. Akkus, O. Ozkasap, and M.R. Civanlar

of a user is transmitted to a group of users by employing a similar approach
in which the users may forward the video they received to other peers. This
allows the system to be distributed and scalable with multipoint conferencing
capabilities.

Shifting the multicasting burden from the routers to the end systems is quite
beneficial in terms of scalability; however, since every end system forwards re-
ceived data to other hierarchically lower systems, security concerns may be in-
troduced. The intermediate peers may alter the received data and forward them
so that the last receivers in the hierarchy may encounter modified data. One way
to prevent this would be using encryption. The video would be encrypted by the
sender and the receivers would decrypt it upon reception. Since the transmitted
video needs to be encrypted and decrypted in a limited time to meet the real-
time streaming demands, this is a challenging task. Although there are some
efficient encryption/decryption algorithms that can meet the constraints, they
all make use of a shared key which can not be used in this context because of
the symmetry property of the scheme; the intermediate peers could also use the
key to encrypt the video and deceive the next receivers.

In this study, an approach for securing the integrity, authentication and non-
repudiation of transmitted video in an ESM system is described. The transmitted
video may be seen by everyone. The approach employs public key cryptography,
so that the private key is known only to the sender and the public key is freely
available. Two approaches are described and compared: 1) Encryption of the
entire packet, so that a malicious user could not alter data and deceive the next
receiver. 2) Encryption of the unique digest value, so that the receiver could
check the integrity and authenticate the source of every data packet. Also, non-
repudiation is also provided since only the sender has the private key to encrypt
the digest value. The aim of this study is to investigate the feasibility of public-
key based asymmetric approaches for secure video transmission among a group
of participants in an ESM session. Our ultimate target is to integrate an efficient
asymmetric solution for secure video transmission to our peer-to-peer multipoint
video conferencing system [2] and [3].

Next section gives a brief literature survey about how encryption techniques
are used with video transmission. Section 3 describes the design details and
Section 4 presents simulation results. Discussions and conclusions are given in
Section 5 and Section 6.

2 Related Work

As a first thought, encryption of the whole data packet by the sender, called
nave encryption, seems reasonable. However, this approach brings considerable
burden to the systems. To overcome this and enhance performance, Maples and
Spanos [4] and Li et al. [5] proposed encrypting only the I-frames of video which
are used as reference frames for the others. However, Agi and Gong showed that
from only the B and P-frames, which are not encrypted, the video was recoverable
and encryption of only I-frames does not bring any performance enhancements
[6].

Secure Transmission of Video on an End System Multicast 605

In [7], the first standard compliant system adapted to MPEG-4 is described.
The encryption system ARMS enables rich media streaming to a large-scale
client population. End-to-end security is established while content is adapted
to the network conditions and streamed over untrusted servers. The encryption
and decryption scheme used is AES in counter mode. RFC3711 [8] defines the
standards of the encryption/decryption schemes that could be used in RTP [9].
There again, for the encryption AES is mentioned because of its low overhead
and efficiency.

In [10], Tang proposes that compression and encryption need to be done at the
same time to enhance performance and to meet the real-time demands of multi-
media. Techniques that first compress the images and then encrypt them bring
too much overhead and are not practically usable. They introduce a new cryp-
tographic extension to MPEG, employing random algorithms and image com-
pression methods. Another algorithm for encrypting video in real-time, namely
VEA (Video Encryption Algorithm) [11], uses composition of video compression
techniques using Discrete Cosine Transform with a secret key minimizing the
overhead and meeting the demands of real-time video. Liu and Koenig also pre-
sented a novel encryption algorithm, called Puzzle [12], which is independent of
the compression algorithm so that it can be used by any encoding algorithm.
The encryption is done by using 128-block ciphers.

TESLA [13], Timed Efficient Stream Loss-tolerant Authentication, allows re-
ceivers in a multicast group to authenticate the sender. It requires that the
sender and receivers are loosely time synchronized meaning that the receivers
know an upper bound of the sender’s clock. Although encryption is done with
symmetric keys, they are not known by the receiver until the sender discloses
it. So the receivers need to buffer incoming packets until the key is disclosed.
Non-repudiation is not provided.

All these techniques make use of a shared secret key that can work both ways:
The encryption and the decryption operations are done using the same key. This
is not suitable for an ESM session, since the sender needs to be authenticated
which is not possible in a group sharing a symmetric key. Although symmetric
key mostly enhances performance, another mechanism for distributing the keys
is needed. For a publicly available service, this becomes costly. In [14], chaining
techniques for signing and verifying multiple packets (a block) using a single
signing and verification operation are proposed. This way, the overhead is re-
duced. The signature-based technique proposed does not depend on the reliable
delivery of packets, but uses caching of the packet digests in order to verify the
other packets in the block efficiently. In our scheme, no caching is required and
verification is done per packet basis. Simulations show that this can be done fast
enough even for large key sizes.

3 Design

The approach introduced is independent of the encoding algorithm of the video
since it operates with packets independently. Integrity and authentication can

606 I.E. Akkus, O. Ozkasap, and M.R. Civanlar

be provided either by encrypting the entire packet using chunks or by creating
a unique digest value and encrypting it. On both methods, the real-time video
imposes limits on the key size. These limits are the constraints on the allowed
times of the encryption/decryption operations which can be very short to manage
the bit rate of the video.

The first method describes encrypting/decrypting packets either entirely or
after dividing them into chunks. With larger key sizes, these operations take
enough time to decrease the performance of the solution. As the simulations will
show, operations on the entire packet do not work (because of the packet size)
and dividing into chunks would either require many packets to be sent (after
each division) or to be buffered to build one packet, which would complicate
implementation.

The second method; however, can provide a high security level without in-
creasing the overhead much. The encryption/decryption operations take less
time and processing power which make it more suitable for secure video trans-
mission on end system multicast infrastructure. In this method, the sender side
generates a unique digest value for each packet. This unique digest value is then
encrypted by the private key of the sender creating a digital signature which is
appended to the end of the packet. Upon reception of the packet at a receiver,
the receiver extracts this signature part from the packet and decrypts it with the
public key of the sender. Also, it generates the unique digest value of the packet
and compares this with the value received from the sender. If the values are the
same, this means that the packet received was not altered along the way. If not,
the packet is dropped and appropriate action is taken (e.g. the source may be
informed that someone is trying to modify the contents of the packets).

4 Simulation Results

Simulations were performed on a Pentium IV 2.4 GHz processor with 512 MB
of RAM running a 2.4.20 kernel Linux. The bit rate of the video was assumed
to be 200kbps which makes 25kBps. Packet size was set to 1400 bytes leading
an approximate value of 18 packets/sec. The public exponent used was 25-bit
and the private key was generated according to the corresponding key size for
50 runs of simulation.

4.1 Encryption/Decryption of the Entire Packet

One approach is to treat the entire packet as a big message and encrypt/decrypt
it using the private/public key. This idea has both advantages and disadvantages.
First of all, treating the entire packet as a big message makes the implementation
easy. Also, encrypting and decrypting it, is a trivial task. However, if the packet
is large enough, then the message it represents (1400 bytes = 11200 bits, in
our experiments) can overflow the key size, so that the encryption/decryption
function would not be one-to-one. This means that an encrypted packet could
not be restored by decrypting it. Assuming that the key size is big enough to
handle such cases, performance becomes an issue. Since this operation needs

Secure Transmission of Video on an End System Multicast 607

to be done in one second for several packets to meet the real-time demands of
streaming video, this is clearly not realizable.

Another approach is to divide packets into chunks so that each chunk can
be encrypted/decrypted independently: This idea’s advantage lies in the part
that chunks, a packet is divided into, can be independently encrypted and de-
crypted. The encrypted/decrypted parts only need to be assembled back to back
to form/restore a packet. Since the packet is divided into smaller chunks, pre-
serving the one-to-one mapping of the operations becomes easier. However, this
method requires either many packets to be sent after each encryption which
would increase communication overhead or to be buffered to build one packet
which complicates the implementation.

When considering this method, the issue of determining the chunk size arises.
To preserve one-to-one mapping of the encryption and decryption operations, the
chunk size should not exceed the key size. Fig. 1 and Fig. 2 show encryption and
decryption times with different chunk sizes for different key sizes. In Fig. 1 and
Fig. 2, it can be seen that the encryption and decryption times decrease as the
chunk size is increasing. Increasing key size increases the encryption and decryp-
tion times as shown in Fig. 3. The optimum values for the key and chunk sizes
can be determined considering this information. To provide sufficient security,
a large key should be picked. To meet the real-time demands of the streaming
video with that key, the chunk size should also be large.

As can be seen from the figures, the encryption times are much larger than
the decryption times. This is because the public key exponent is a much smaller
number than the corresponding private key exponent generated according to it.
These values can be further optimized by using similar sized exponent pairs so
that the encryption and decryption times are closer to each other.

0 500 1000 1500 2000 2500
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000
Encryption time vs chunk size

Chunk size (bits)

En
cr

yp
tio

n
tim

e
(m

s)

2048−bit
1024−bit
512−bit
256−bit
128−bit

Fig. 1. Encryption times versus the chunk sizes. Corresponding series show the key
sizes.

608 I.E. Akkus, O. Ozkasap, and M.R. Civanlar

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

3000

Chunk size (bits)

De
cr

yp
tio

n
tim

e
(m

s)

Decryption time vs chunk size

2048−bit
1024−bit
512−bit
256−bit
128−bit

Fig. 2. Decryption times versus the chunk sizes. Corresponding series show the key
sizes.

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

3000

3500

Key size (bits)

Tim
e (

ms
)

Key size vs Encryption/Decryption time

Decryption
Encryption

Fig. 3. Encryption/Decryption times versus the key size. Chunk size is equal to the
key size.

4.2 Encryption of the Unique Digest Value of Each Packet

Another technique would be to create a unique digest value of the packet and
encrypt this value with the private key like done in digital signatures. Here, the
entire packet is treated as one large message. The digest operation is a one-way
function so that the message can not be restored from the digest value. This
digest value is ensured to be unique for each packet so that a malicious user
would not be able to create another message that goes with this valid digest
value and deceive the next receiver. Instead of the packet, its digest value is
encrypted with the private key and appended to the packet. The receiver then
checks the validity of the digest value by simply decrypting it with the public
key.

Since the digest value is just calculated and encrypted only once for the en-
tire packet, this has surely better performance than trying to encrypt all the

Secure Transmission of Video on an End System Multicast 609

chunks. In our simulations, we used SHA-1 for digest generation, and RSA for
public-key encryption of the digest. Table 1 gives the encryption and decryption
times measured. As can be seen, calculating a unique digest value and encrypt-
ing/decrypting it can meet real-time demands without burdening the sender or
the receiver, respectively.

Table 1. Total time spent on digest value calculation and encryption/decryption times
with corresponding key sizes

RSA with SHA-1

Key size (bits) 128 256 512 1024 2048

Encryption time (ms) 1.08 6.52 19.98 96.36 592.68

Decryption time (ms) 0.41 1.63 3.61 9.74 32.19

5 Discussions

In order to achieve integrity, authentication and non-repudiation, encrypting the
entire video packet seemed to be a valid way; however, the simulations showed
that the security that could be achieved using such an idea would be limited.
The maximum key size that could be used in this part of simulation was 1024-bit
with the given public and corresponding private key exponent sizes. Although
with the optimization described above (using similar sized public and private
key exponents) in practice, a lower value is expected since the application would
consume processing power while dividing the packets into chunks at the sender
side and putting them back together at the receiver side.

On the other hand, calculating a unique digest value and encrypting it worked
under all key sizes given, even without the optimization. The calculated digest
value is not large (20 bytes when SHA-1 is used) that the sender could not handle,
and the main advantage is that it is calculated once per packet. Calculating the
digest value is a one-way function, so that recovering the data is impossible.
However, by encrypting it, the sender can be sure that the receiver can check
the integrity of the packet. Also, source authentication and non-repudiation can
be ensured without considering confidentiality because the publicly available
service does not need it. Since the encryption is possible only by the sender side
because of the private key, an intermediate peer could not change the contents
of the packet and send it to another receiver, because the last receiver would
notice after calculating the digest value and comparing it with the decrypted
one.

6 Conclusions

A new approach for securing the integrity of a video transmission is presented.
Encrypting video packets would be a first idea; however, all existing techniques
to encrypt video require the use of a shared secret key. Although they can meet
the real-time demands of streaming video, they can not be used in an ESM
system, where the service is free to anyone. By such an application, a shared

610 I.E. Akkus, O. Ozkasap, and M.R. Civanlar

secret key can not be used, because of the key’s symmetry property, meaning
that encryption and decryption are done using the same key. We investigated
the feasibility of two public-key based approaches for secure video transmission
on ESM: 1) Encrypting the entire packet 2) Calculating a unique digest value
and encrypting it. Encrypting the entire packet ensures limited security because
of the real-time demands and brings too much burden on the sender and receiver
side. On the other hand, calculating a unique digest value for every packet and
encrypting it, has better performance and can be done faster achieving higher
security, source authentication and non-repudiation. As future work, we plan
to integrate such an asymmetric solution for secure video transmission to our
peer-to-peer multipoint video conferencing system.

References

1. Chu Y., Rao S., Zhang H.: A case for end system multicast, Proceedings of ACM
Sigmetrics, (2000).

2. Civanlar M. R., Ozkasap O., Celebi T.: Peer-to-peer multipoint video conferencing
on the Internet, Signal Processing: Image Communication 20, pp.743-754, (2005).

3. Akkus I. E., Civanlar, M. R., Ozkasap O.: Peer-to-peer Multipoint Video Con-
ferencing Using Layered Video, to appear on International Conference on Image
Processing ICIP 2006.

4. Spanos, G. A., Maples, T. B.: Performance Study of a Selective Encryption Scheme
for the Security of Networked Real-time Video. Forth International Conference on
Computer Communications and Networks, pp. 2-10, (1995).

5. Li, Y., Chen, Z., Tan, S. M., Campbell R. H.: Security Enhanced MPEG Player.
IEEE 1st International Workshop on Multimedia Software, (1996).

6. Agi, I., Gong, L.: An Empirical Study of MPEG Video Transmission. Proceedings
of the Internet Society Symposium on Network and Distributed System Security,
pp.137-144, (1996).

7. Venkatramani, C., Westerink, P., Verscheure, O., Frossard, P.: Securing Media For
Adaptive Streaming, Proceedings of the eleventh ACM international conference on
Multimedia, ACM Press, (2003).

8. Baugher, M., McGrew, D., Naslund, M., Carrara, E., Norrman, K.: RFC3711 The
Secure Real-time Transport Protocol (SRTP) (2004).

9. Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RTP: A Transport Protocol
for Real-Time Applications, (2003).

10. Tang, L.: Methods for Encrypting and Decrypting MPEG Video Data Efficiently,
Proceedings of the fourth ACM international conference on Multimedia, ACM
Press, (1997).

11. Changgui, S., Bhargava, B.: A Fast MPEG Video Encryption Algorithm, Proceed-
ings of the sixth ACM international conference on Multimedia, ACM Press, (1998).

12. Liu, F., Koenig, H.: A Novel Encryption Algorithm for High Resolution Video, Pro-
ceedings of the international workshop on Network and operating systems support
for digital audio and video NOSSDAV ’05, (2005).

13. Perrig A., Song D., Canetti R., Tygar J. D., Briscoe B.: RFC4082 Timed Efficient
Stream Loss-Tolerant Authentication (TESLA): Multicast Source Authentication
Transform Introduction, (2005).

14. Wong, C. K., Lam, S. S.: Digital Signatures for Flows and Multicasts, EEE/ACM
Transactions on Networking (TON), Vol 7 Issue 4, IEEE Press, (1999).

	Introduction
	Related Work
	Design
	Simulation Results
	Encryption/Decryption of the Entire Packet
	Encryption of the Unique Digest Value of Each Packet

	Discussions
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

