
Data Recovery for Web Applications

by

İstemi Ekin Akkuş

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Electrical and Computer Engineering
University of Toronto

Copyright c© 2009 by İstemi Ekin Akkuş

Abstract

Data Recovery for Web Applications

İstemi Ekin Akkuş

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2009

Web applications store their data at the server. Despite several benefits, this design raises

a serious problem because a bug or misconfiguration causing data loss or corruption can

affect a large number of users. We describe the design of a generic recovery system for

web applications. Our system tracks application requests and reuses undo logs already

kept by databases to selectively recover from corrupting requests and their effects. The

main challenge is to correlate requests across the multiple tiers of the application to

determine the correct recovery actions. We explore using dependencies both within and

across requests at three layers, (i.e., database, application, client) to help identify data

corruption accurately. We evaluate our system using known bugs and misconfigurations

in popular web applications, including Wordpress, Drupal and Gallery2. Our results

show that our system enables recovery from data corruption without loss of critical data

incurring little overhead while tracking requests.

ii

Acknowledgements

I would like to thank to my advisor Prof. Ashvin Goel for his guidance, time and patience.

I would also like to thank to Prof. David Lie, Prof. Cristiana Amza and Prof. Raymond

Kwong for being a member in my committee and for their corrections and suggestions to

improve my work. I also want to thank to the Department of Electrical and Computer

Engineering at the University of Toronto for its financial support.

Without my friends and colleagues, I would not have come this far. I would like to

thank Canan Uçkun for her support, kindness and love. Without her, it would have

been much more difficult to finish this thesis. I want to thank Gokul Soundararajan for

his help, thoughts and suggestions on my work; Vivek Lakshmanan for his suggestions

and for listening to my random rants; Vladan Djeric for trying to cheer me up and give

me different perspectives looking at things and Stan Kvasov, Lionel Litty, Lee Chew,

Thomas Hart, Maxim Siniavine and Eric Chen for making my experience more enjoyable,

be it with coffee breaks, sushi lunches, barbecue parties or bar crawls. I also want to

acknowledge Adrian-Daniel Popescu, Adam Czajkowski, Bogdan Simion, Daniel Lupei,

Madalin Mihailescu, Pouya Alagheband, Saeed Ghanbari, Jin Chen, Weihan Wang, David

Tam, Zoe Chow and many others in the Computer Systems Lab.

Finally, I would like to thank my family. Even though we are thousands of miles

apart, I have always felt their support and known that they would always be there for

me, no matter what.

iii

Contents

1 Introduction 1

1.1 Contributions . 7

1.2 Outline . 7

2 Related Work 8

3 Approach 11

3.1 Application Model . 11

3.2 Overview . 13

3.3 Monitoring . 15

3.4 Analysis . 17

3.4.1 Database Dependencies . 17

3.4.2 Application Dependencies . 20

3.4.3 Client Dependencies . 22

3.4.4 Tainting . 23

3.4.5 Replaying Requests . 24

3.4.6 Dependency Policies . 25

3.4.7 Whitelisting . 26

3.5 Recovery . 28

3.6 Selective Recovery . 28

iv

4 Implementation 31

4.1 Monitor . 31

4.2 Analysis . 33

4.2.1 Query Rewriting . 34

4.2.2 Handling of Blind-Writes . 35

4.2.3 Propagation of Taint . 35

4.2.4 Whitelisting . 36

4.3 Recovery . 36

4.4 Limitations . 37

5 Evaluation 39

5.1 Experimental Setup . 39

5.2 Recovery Accuracy . 40

5.2.1 Correct Recovery Actions . 40

5.2.2 Wordpress Functionality Bug: Renamed Link Categories 42

5.2.3 Drupal Data Loss Bug: Lost Comments 47

5.2.4 Drupal Data Loss Bug: Lost Voting Information 50

5.2.5 Gallery2 Functionality Bug: Removing Permissions Breaks the Ap-

plication . 52

5.2.6 Gallery2 Functionality Bug: Resizing Images Breaks Existing Links

to Images . 54

5.2.7 Remarks . 56

5.3 Performance . 56

5.3.1 Throughput Overhead . 58

5.3.2 Disk Space Overhead . 59

6 Conclusion 61

v

Bibliography 61

vi

List of Tables

4.1 Modifications to existing software . 32

4.2 Query rewriting examples with row-level tainting 33

4.3 Query rewriting examples with field-level tainting 34

5.1 Recovery accuracy for request-level and program-level dependency policies 43

5.2 Recovery accuracy of database-level dependency policies 44

5.3 Disk space overhead . 59

vii

List of Figures

3.1 Dependencies across different layers of the application. 14

3.2 Row-level and field-level tainting example 19

3.3 A request dependency graph. 21

5.1 Throughput results. 57

5.2 Latency results. 58

viii

Chapter 1

Introduction

Web-based applications generally store persistent data on the server, enabling client

mobility, simpler configuration and improved data management. These applications are

increasingly being designed for extensibility and to support a plugin architecture, allowing

third-party developers to rapidly introduce additional features and provide enhanced

services and customization. However, this design can lead to an application bug or a

single misconfiguration affecting a large number of users, potentially causing data loss or

corruption. Third-party plugins may be poorly tested, may cause problems with other

plugins, or even worse, corrupt user data. For example, administrators of the Wordpress

blogging application [16] are generally advised to back up all data before installing any

new plugins or new versions of the application [17].

Data corruption and recovery pose especially serious challenges for web applications,

since these applications may store important user data and configuration settings. For

example, Wordpress can be configured to store arbitrary user data, and can even embed

other web applications, such as the powerful Gallery [39] photo application that allows

storing and sharing personal photos with specific users. However, Wordpress has had

several vulnerabilities [19, 20, 22] that can cause data loss or corruption. A typical

solution to this problem is to restore data from a backup. However, this approach loses

1

Chapter 1. Introduction 2

updates that occur after the backup is performed, and then these updates must be

recovered manually or via some ad-hoc methods. Furthermore, a backup solution does

not help diagnose the external or application events that caused the problem. As a

result, currently much of this diagnostic work needs to be done manually, which is time

consuming and error prone.

An alternative to backups is to use application-specific recovery features. A common

example is a simple undo functionality, available in web applications such as Google

Mail and Google Docs. This feature allows the user to undo her last action, enabling

recovery from simple misconfiguration problems or accidental clicking. While this feature

is useful, its implementation requires significant modifications to applications, because

the developer needs to carefully design and implement undo functionality for all actions

available to users. This problem only becomes worse for applications with extensible

functionality. As a result, while there has been significant interest in developing undo for

web applications [8, 9, 10, 18], these applications often do not provide such a facility.

A more significant problem with the simple undo approach is that it is not useful

for the user when the corruption is detected much later than it occured. In this case,

the user may have to undo and redo various actions manually, or the undo may not be

available (e.g., the user navigates away from the web page where the action occurred in

Google Mail), or it may not work at all because the failure may have propagated and

affected other users. For example, Gallery2 bug number 2016834 [12] prevents all users,

including the administrator, from accessing the application interface and thus prevent

her from undoing her last action, even if the undo feature was implemented.

Perhaps the most serious problem with application-specific recovery is that it depends

on the correctness of the application. If a data loss or corruption is caused by a buggy

application, undo may not even work correctly and may cause further corruption. For

instance, bug number 67745 [6] in Drupal [4], a popular content management system,

causes all comments on the site to be deleted if two administrators try to delete the same

Chapter 1. Introduction 3

comment. If undo were available, it would restore this comment, but all other comments

would be lost because the developer did not expect them to be deleted.

In this thesis, we describe the design of a generic data recovery system for web appli-

cations. These applications generally store their persistent data in a database tier. Our

main goal is to provide tools that will allow web application administrators to diagnose

and recover from application failures that cause persistent data stored in the database

tier to be corrupted. Specifically, we focus on helping the administrator identify the

persistent data corrupted by an application bug or a misconfiguration, and selectively

recovering this data without affecting the rest of the application.

A significant challenge with this selective recovery idea lies in identifying data cor-

ruption and its dependent effects accurately. For example, in a recent case, a major

electronics retailer experienced a misconfiguration, so that the price of one of its prod-

ucts was entered incorrectly [3]. This price had to be fixed and all dependent purchases

involving this product had to be cancelled. Another online retailer had to shut down its

services after a similar pricing error [2] to determine the dependent effects of the pricing

misconfiguration. Many similar examples [1, 5, 7] show that determining corruption and

its dependent effects accurately is an important part of the recovery process.

These dependent effects can be captured using a combination of dependencies at

the different tiers of the application. At the database tier, a query might read a row

that was written by another query and update a third row, thereby creating a causal

dependency between the queries. Similarly, a transaction might read a row updated by

a previous transaction and update others. Foreign key constraints can also be the cause

of a dependency, where an update or delete to a row in a table causes other referencing

tables to be updated [15].

At the application tier, causal dependencies can occur either within a request or across

requests. A request (i.e., HTTP request) is an action of the user at the presentation

layer triggering application logic to execute. A causal dependency within a request

Chapter 1. Introduction 4

occurs when a request issues a query that reads a row, uses that information to do

some computation and uses the computed values to update other rows. This dependency

cannot be captured at the database layer itself. A recovery system should be able to

handle these dependencies because if these dependencies are ignored, the application

state may become inconsistent. For example, Gallery2 assigns a global ID to all objects

in the application. The sequence ID counter is updated and the new sequence value is

used when inserting a new object. If this dependency is ignored, the recovery system may

revert the sequence ID counter to its old value without reverting the object insertion. This

will cause a problem with future insertions which will attempt to use an already-in-use

ID.

Dependencies across requests are created when a request reads rows that another

request has updated. This kind of dependency is similar to transaction-level dependencies

in the database. However, web applications often do not use a transaction for an entire

request to improve performance. For example, a request that adds a new link associated

with a category in the Wordpress blogging application will read the row with the category

information and therefore is dependent on the previous request that created the category.

Missing these dependencies may effect the accuracy of the recovery, resulting in corrupted

data lingering in the application, potentially causing more problems.

Another type of dependency is a foreign key constraint implemented at the application

level. Most web applications handle these dependencies manually because they do not

make any assumptions about the underlying storage engine, which may or may not

implement foreign key constraints. For instance, Gallery2 uses a global table to keep

track of individual items and another table for maintaining parent-child relations. A

recovery action deleting an item from the global table, but not from the relations table,

would cause an inconsistency, in which certain items would have a non-existent parent

item.

Certain dependencies such as login sessions and user accounts can only be tracked

Chapter 1. Introduction 5

at the presentation tier and create client-level dependencies. Web applications usually

store an identifier for each user in a database table and query it when a user logs into the

application, assigning her a handle on user-specific state. This handle is used by later

requests of this user as one of the parameters submitted to the application (e.g., cookies).

Requests belonging to the same session or the user may not be considered as dependent

at the application and the database layers.

Using dependencies for data recovery has been explored previously in the context of

transactional databases [24, 29, 37] and file systems [32, 52]. However, these techniques

are applied at a single layer, making them unsuitable for web applications. For exam-

ple, transaction-level dependency analysis [24, 29, 37] cannot be directly applied to web

applications for two reasons. First, web applications may not use transactions, so the

recovery system cannot depend on their existence. Second, these applications operate at

multiple layers. By ignoring the interactions across these layers, these approaches ignore

related actions, potentially causing false negatives and inconsistencies during recovery.

Our evaluation in Chapter 5 illustrates this problem.

Our recovery system correlates dependencies across different layers, namely at the

presentation, application-logic and database tiers, thus helping diagnose data corrup-

tion more accurately. It does not rely on the web application for recovery and thus

is resilient to failures and bugs in the applications. Our system monitors all the tiers

of the web application to determine the effects of data corruption. This approach also

allows us to provide last action undo functionality without making any changes to ex-

isting applications. Our recovery method takes advantage of several characteristics of

web applications to track data corruption and provide a generic recovery method for

web applications. These characteristics include a clean separation of the application into

presentation, application-logic and database tiers. Since the application-logic is written

in a high-level language and all persistent data is stored in the database-tier, it is easier

to monitor the application as explained later, without modifying it.

Chapter 1. Introduction 6

Although our recovery system can correlate dependencies across all the tiers of the

application, it can not recover from certain types of application bugs. For example, we do

not handle bugs that occur at the presentation tier for two reasons. First, these ’views’

of application states are temporary as they are generated every time a page is generated.

Second, they are generated using the data that is stored persistently in the database,

so focusing on the recovery of persistent data corruption makes a recovery system more

usable. Also, if a bug in the application logic misses an update to the database, our

recovery system can not handle it because the update never occurred.

We explore using several dependency policies at the different layers of the application

and apply them to real bugs and misconfiguration in web applications and describe the

benefits and drawbacks of these policies. A potential drawback of these policies is that

they can create false positives, in which case dependent requests that are essentially

independent are marked as dependent, leading to loss of good work. We identify and

explain the causes of these false positives and suggest methods to reduce this problem.

More importantly, we argue that the use of multiple policies helps the administrator

determine the corrective recovery actions more rapidly.

Our recovery system uses two novel dependency analysis techniques. First, it com-

bines application replay with offline taint analysis. Tainting has generally been used

online for securing applications [40, 42, 51], but we are not aware of its use for data

recovery. Second, we explore the benefits of finer-grained field-level dependencies at the

database-tier than existing approaches that use row-level tainting [24, 29, 37]. These

techniques help the administrator identify the data corruption more accurately.

We have implemented a prototype of our recovery system for the PHP interpreter and

the MySQL database. PHP and MySQL are widely used by existing web applications

for generating dynamic web pages and for storing application content and settings. We

have tested our system on popular web applications including the Wordpress blogging

application [16], Drupal content management system [4] and Gallery2 photo application

Chapter 1. Introduction 7

[39]. We evaluate the effectiveness of our approach for various data corruption scenarios

that can be triggered by known bugs and misconfigurations in these applications.

1.1 Contributions

In this thesis, we make the following contributions.

• We provide a generic recovery system for web applications, that is resilient to bugs,

failures and misconfigurations.

• We provide the simple undo functionality without any changes to the applications.

• We correlate dependencies acrosss layers and explore several dependency policies in

real web applications. These policies employ application-level tainting and database

field-level dependency analysis. We identify strengths and drawbacks of each policy

and suggest methods to mitigate these drawbacks.

1.2 Outline

In the next chapter, we describe related work. Chapter 3 explains the details of our

approach. Chapter 4 describes our prototype implementation. In Chapter 5, we evaluate

the effectiveness of our approach for various data corruption scenarios in popular web

applications. Chapter 6 presents our conclusions.

Chapter 2

Related Work

Liu et al. [37] initially proposed a method for recovering from malicious transactions

based on tracking inter-transaction dependencies. These inter-transaction dependencies

are created by examining the read and write sets of transactions. The attacking transac-

tion and effected transactions are moved to the end of the transaction history to simplify

recovery. Their follow-up works proposes a system in which normal operation is al-

lowed while recovery is performed [24]. Similar recovery methods have been proposed

in Fastrek [29, 43] and the Flashback Database[47]. These methods focus entirely on

database-level recovery while ignoring application-level dependencies, which can cause

inconsistent recovery at the application level. Our system tracks application-level depen-

dencies during recovery by employing dynamic data-flow (i.e., tainting) within requests

rather than just relying on the read and write sets of queries and requests, avoiding

application-level inconsistencies and tracking data corruption more accurately with less

false positives. The next chapter compares these approaches in more detail.

Compensating transactions have been used to recover from the effects of long-running

or committed transactions [34, 36] and for recovery in multi-level systems that are de-

signed to increase concurrency [49, 38]. We also use compensating transactions to perform

recovery, but our focus is on recovering from application bugs or vulnerabilities that cause

8

Chapter 2. Related Work 9

data corruption, and we target web applications that may not use transactions.

File system backups and snapshot-based file systems are commonly employed for

recovering from data corruption. However, these methods revert data based on time

and can lose important or legitimate updates that have occurred since the backup was

taken. Selective file-system recovery aims to solve this issue via a set of dependency

rules [35] that taint certain file updates, and then the effects of only the tainted updates

are reverted [32, 52]. This method is too coarse grained for database-based applications,

because databases may save all information in a single file. The recovery operation would

simply generate an older version of the database file, suffering from the same drawbacks

as the file-system snapshot approach.

Self-securing storage devices [44] internally audit all requests and keep old versions

of data for a window of time, regardless of the commands received from potentially

compromised operating systems. This approach can be used to secure the logs in our

system against OS exploits.

Operator Undo [26] is a powerful framework for recovering from application bugs. The

authors use it to recover from e-mail server configuration failures, but the framework re-

quires modifying applications to ensure that requests can be serialized and replayed, and

persistent data is stored separately from applications. It also requires special recovery

procedures for each type of application request. By focusing on web applications that

have well-defined interfaces, we are able to provide similar functionality without modify-

ing applications.

Causeway [27] provides operating system support for metadata (e.g., request id) trans-

fer across the tiers of an application. Applications have to be modified to provide the

metadata information. This information allows requests to be prioritized at each tier.

Our work utilizes the well-defined interfaces in a web application’s tiers and passes meta-

data across tiers to log and correlate them later without requiring any modifications to

the applications. A similar idea was used by Magpie [25] where the request execution

Chapter 2. Related Work 10

paths were used to diagnose application failures.

There have been several proposals for using dynamic taint analysis for securing web

applications. Nguyen-Tuong et al. [42] modify the PHP interpreter to dynamically track

tainted data in PHP programs, and Haldar et al. [33] apply a similar approach to Java.

WASC [40] is a compiler that adds taint checking in web applications to project against

SQL and script injection attacks. An alternate approach is to use static taint propagation

to detect vulnerabilities statically [51]. These approaches require setting initial sources

of taint either statically or during execution, and typically all network and user inputs

are marked tainted. We do not use tainting during normal operation. Instead, we follow

the effects of a bug or an attack during analysis and recovery.

Replay has been used extensively for analysis of intrusions. ReVirt [31] performs

replay at the machine level using a virtual machine monitor, allowing detailed analysis

of vulnerabilities and intrusions, but it does not have any support for data recovery.

The RolePlayer [30] replays the client and the server sides of a session for a variety

of application protocols when given examples of previous sessions for network intrusion

analysis.

Our work is also motivated by software configuration problems that cause data cor-

ruption. Several approaches have been proposed for dealing with configuration problems.

PeerPressure [48] uses statistical analysis of multiple systems to find and suggest a work-

ing configuration. Chronus [50] pinpoints when a configuration problem occurred by

using predicates that determine whether the system is working correctly. AutoBash [45]

aims to detect configuration problems and suggest corrective actions based on causality

analysis.

Chapter 3

Approach

This chapter describes the design of our data recovery system. Our aim is to help the

administrator to identify the persistent data corrupted by a bug or a misconfiguration

in a web application, and selectively recover this data without affecting the rest of the

application. Our system consists of a monitoring component that operates during normal

application operation (on-line phase), and two components that perform analysis and

data recovery after corruption is detected (post-corruption phase). Below, we first present

the application model assumed by our recovery system, then provide an overview of our

system and describe each of the components of our system in more detail.

3.1 Application Model

A web application is typically designed using a three tier architecture, consisting of the

presentation, application-logic and database tiers. A user or an administrator interacts

with the web application by issuing requests, which are external actions at the presen-

tation (or client) layer that invoke the application logic. The application logic executed

by each request makes database queries or transactions to access application data and

configuration information.

Our recovery system takes advantage of several features of web applications to track

11

Chapter 3. Approach 12

bug-related activities and data corruption. First, most web applications store their per-

sistent data in databases for concurrency control and easy search capabilities, which

allows reusing the database logs for tracking the persistent modifications made by the

application. Second, web applications are generally written in high-level or type-safe lan-

guages such as PHP or Java, allowing easier monitoring of the application. For example,

an unmodified PHP application can be monitored by instrumenting the PHP interpreter,

rather than requiring binary rewriting or source-code modifications for instrumentation.

Third, web servers treat each user request independently, often creating a separate

process per request to ensure isolation, and any interaction between requests occurs

through database queries. In contrast, full-blown OS processes have numerous IPC and

shared memory mechanisms available for communication that not only make it hard to

monitor the application [35], but these channels can also cause contamination to spread

more easily [32]. Finally, web applications have a simple and well-defined interface that

is mostly limited to requests and database operations. This interface makes it easier to

replay requests to the application, since there are fewer sources of non-determinism. We

use replay because it allows tracking data dependencies more accurately than previous

methods.

Our recovery system assumes that the database and the application-logic engine (e.g.,

the PHP interpreter) are not buggy, and data is corrupted at the database layer due to

bugs or misconfigurations in the application-logic or in the presentation layer. Our system

also assumes that the underlying database supports transactions so that the database

undo logs are generated and can be used for recovery. The web application may or may

not explicitly use transactions, but if it does not, each query will be treated as a sep-

arate transaction at the database via the ’autocommit’ feature. Our system does not

immediately purge the undo log entries for a transaction after the transaction is com-

mitted. Instead, the log entries are purged after a user-configurable time. Transactions

that occur before this time are considered stable and their effects cannot be reverted. Fi-

Chapter 3. Approach 13

nally, we assume that the database uses a serializable isolation level so that the database

transactions can be replayed correctly.

3.2 Overview

Our recovery system executes in three phases, an on-line monitoring phase, a post-

corruption analysis phase and a recovery phase. The monitoring component is rela-

tively lightweight, and broadly speaking, it tracks user (or administrator) requests across

the three tiers of the application, namely at the presentation, application-logic and the

database tiers, allowing data recovery at the request granularity. This method of tracking

requests has similarities with the use of request paths for diagnosing application failures

[25, 28]. Monitoring the application and tracking requests at all these tiers gives our

system the ability to perform generic recovery.

The analysis and recovery components are used after corruption is detected, such

as an administrator determining that a web page does not display as expected. These

components use the data collected during the monitoring phase, including database logs,

to help guide the administrator through the recovery process. The analysis component

helps the administrator determine corruption related events, and is crucial for effective

recovery.

Figure 3.1 shows the dependencies that are created at each tier of the application.

Our analysis component makes use of three types of dependencies, at the database, the

application and the presentation or the client side. First, it captures database depen-

dencies at the row or field granularity based on the database rows or fields accessed by

the application logic. These dependencies help correlate different requests based on the

database operations performed by the requests, similar to existing approaches. These

dependencies are coarse-grained because they are applied at a request granularity, but

they help determine a maximal set of dependent requests.

Chapter 3. Approach 14

Figure 3.1: Dependencies across different layers of the application.

Second, the analysis component uses dynamic data-flow based tainting to generate

application-logic data dependencies within a request (shown as program-level dependen-

cies in Figure 3.1), which helps reduce false dependencies across requests that were gen-

erated previously. While tainting has been used extensively to detect whether untrusted

data affects sensitive operations [33, 41], we are not aware of its use for data recovery.

Furthermore, while tainting is normally used on-line to secure all code execution, the

analysis component only uses tainting during the post-corruption phase on requests that

are considered dependent on one or more initial tainted requests. It performs tainting

by replaying the dependent requests, which requires capturing the request parameters

during the monitoring phase.

Finally, the analysis component uses client-side dependencies across requests, such

as login sessions and user accounts. For example, session cookies identify all requests

associated with a login session. These types of dependencies provide a useful abstraction,

Chapter 3. Approach 15

because they can help provide different starting points for the analysis. For instance, an

administrator might know that the data corruption started with a specific user and

start the dependency analysis by initially tainting all modifications by this user. This

abstraction may also be useful for recovery. For instance, an administrator may wish to

revert all the effects caused by a session, if she knows that the session is responsible for

the data corruption and there are no other dependencies.

The recovery component provides various tools that simplify the recovery process.

These tools provide information, such as the time line of requests and sessions that

affected specific database tables or generated web pages, helping the user identify specific

requests or sessions that are the root cause of the failure. These act as the starting point

for our tainting analysis, where the analysis component described earlier determines the

dependencies. Finally, the recovery component uses the information in the database log

to generate compensating transactions that selectively revert the effects of the database

operations issued by the tainted requests that caused the data corruption.

3.3 Monitoring

The monitors track and correlate requests across all the tiers of the application, allowing

request-level data recovery. We chose requests as the minimal granularity for recovery,

because they are the smallest logical unit of application interaction (i.e., applications exe-

cute code at the granularity of requests), and they are relatively independent. In essence,

we convert a request into a transaction during recovery, thus avoiding application-level

inconsistencies after the recovery operation, as we will explain later in Section 5.2.1. Re-

quests serve two other purposes in our system. First, our system uses them to generate an

initial dependency graph that provides a list of tainted requests. If our system used trans-

actions to generate dependencies, it would miss dependencies across transactions within

the same request. Second, our system replays requests to prune false dependencies in the

Chapter 3. Approach 16

dependency graph, as described below.

The monitors log sufficient information to allow mapping each request to database

transactions, and transactions to specific tables and rows that were modified. These

request and transaction-level mappings, together with the database undo log, allow se-

lectively reverting the effects of all persistent data modifications performed by a request,

as described in the rest of this chapter.

The monitor at the database tracks the physical rows that were written by a transac-

tion by instrumenting the database, since concurrent transactions can interleave and the

precise execution order is only available within the database. Database modifications are

stored in the undo log and our transaction-level mapping is an index into this log, with

the key of the index being the commit log sequence number (LSN) of the transaction.

This key value, called transaction ID, is ordered in transaction execution order, since we

assume that the database uses a serializable isolation level. This ordering is important

for replaying requests as described later.

The database, however, does not have application-specific information, such as the

transactions generated by a request, or by a specific user, and it cannot distinguish

between transactions issued by an explicit user request (e.g., form submission) and an

automated system operation (e.g., maintenance scripts that are embedded in an image

and executed when the browser loads the image). Fortunately, this information can be

obtained by monitoring the application. We instrument the application-logic engine,

such as the PHP interpreter, to log the transactions issued by a request. Specifically, the

monitor at the application-logic engine generates a request-level mapping by assigning

a unique identifier to each request, called request ID, and logging the transaction ID

of all transactions issued by each request. This mapping also logs the queries issued by

each transaction and some application-specific information described later in this section.

None of this instrumentation requires any changes to the application code.

Chapter 3. Approach 17

3.4 Analysis

The analysis component helps determine data corruption or loss related activities, and

is crucial for effective recovery. It operates during the post-corruption phase. Before

starting the analysis, the current state of the application (i.e., database tables) is saved.

The analysis is performed in a sandbox environment, so that it will not affect the current

state. After the analysis, the recovery actions can be performed on the previously saved

state of the application. The analysis component uses the data collected during the

monitoring phase to derive three types of data dependencies, at the database, program

and the client level as shown in Figure 3.1. These dependencies help track contaminated

data across the multiple tiers of the application.

The following sections describe each of these types of dependencies in more detail.

Next, we present our replay-based tainting (i.e., dynamic data-flow) approach for iden-

tifying the effects of data corruption. Then, we present several dependency policies that

we provide to the administrator during the analysis phase to help identify the effects

of data corruption more rapidly. Finally, we describe our selective recovery component

which is invoked after the data corruption has been identified accurately.

3.4.1 Database Dependencies

We generate data dependencies across requests based on database accesses. A query

Q2 is dependent on another query Q1 when Q2 reads data written by Q1. Similarly,

a request R2 is dependent on request R1, when R2 contains Q2 and R1 contains Q1.

These dependencies help generate a dependency graph with requests as nodes and edges

as data dependencies as shown in Figure 3.3.

The analysis component needs to know the read set and the write set of each query to

generate a dependency. These sets can be at the granularity of a table, a column, a row or

an individual field in a row, with finer granularity causing fewer false dependencies, but

Chapter 3. Approach 18

requiring more bookkeeping. As described earlier, the monitor captures row-level write

sets, because the database already maintains undo information at the row level. However,

databases generally do not log read sets, because they do not need this information and

this logging can impede performance. This problem has been addressed previously in

a similar context in two ways, other than simply logging the read sets. The first is to

create a read-set template for each query, and then materialize the rows read by the

query based on the parameters passed to the query [24]. However, this method requires

manual creation of a template for each query issued by the application. A second method

consists of instrumenting the database to generate and store the dependencies during the

on-line phase [29]. This approach generates dependencies more accurately, but affects

performance during normal operation.

Our analysis component generates dependencies during the post-corruption phase,

using a method similar to read-set templates, but without requiring manual creation

of templates. It derives an approximate, but conservative estimate of the query read

set by parsing the query and determining the tables accessed. This simple method for

generating read sets results in a larger dependency graph compared to the previous

approaches. However, we show in later sections that a larger dependency graph only

affects the time to perform recovery, but not the overall accuracy of our solution.

The dependency graph is generated as the read and write sets of queries are deter-

mined. The queries are examined in transaction ID order, and the graph generation

requires a single linear pass over all queries that have been issued since the time when

the corrupting request was issued.

Blind-Writes

A blind-write is a database operation in which a query overwrites the value of a field

without reading it. Previous approaches, focusing on security, convert blind-writes to

regular writes, namely they assume that each write operation reads the value before

Chapter 3. Approach 19

row-level tainting:

// taint the row

q1 = UPDATE table1 SET field1 = 5, taint = 1 WHERE id = 1

// reset the taint for the row (lose the taint)

q2 = UPDATE table1 SET field2 = 10, taint = 0 WHERE id = 1

field-level tainting:

// taint field1

q1 = UPDATE table1 SET field1 = 5, field1 taint = 1 WHERE id = 1

// reset the taint for field2; field1 is still tainted

q2 = UPDATE table1 SET field2 = 10, field2 taint = 0 WHERE id =1

Figure 3.2: Row-level and field-level tainting example. Row-level tainting cannot take

advantage of blind-writes and has to be conservative. Field-level preserves taints for each

field separately.

writing to it [24, 37]. These algorithms work by moving malicious transactions and their

dependent transactions to the end of the transaction history and reverting their effects.

A transaction G is assumed to be independent of a previous malicious transaction M if

the intersection of the write set of M and the read set of G is empty. In this case, M

can be undone without affecting the result of G. However, this result is not true if G

performs a blind write, since undoing M may overwrite the value written by G. Managing

blind writes increases complexity in these algorithms and so blind writes are converted

to regular writes.

We believe that blind-writes can help break false dependencies and thus reduce the

amount of work that is lost due to false positives. Our experience showed that many web

applications use blind-writes. Since a blind-write overwrites a value without reading it,

it allows resetting a row or field taint in our tainting algorithm. A row-level blind write

Chapter 3. Approach 20

requires updating the entire row or else taint can be laundered. Consider the following

example shown in Figure 3.2. If query q1 updates a field (field1) with a tainted value

(5) for a row, the row will be marked as tainted. If another query q2 updates another

field (field2) in the same row with an untainted value (10), then the taint information

will be lost, even though the tainted value (5) is still stored in the database. Field-level

tainting does not suffer from this issue as shown in the second part of Figure 3.2.

This example shows that row-level tainting provides fewer opportunities for breaking

taint dependencies than field-level tainting. We provide both levels of tainting to compare

field-level tainting with previous approaches using row-level tainting [29, 43] to propagate

the taint in the database.

3.4.2 Application Dependencies

The dependencies described above apply to entire requests and they are tracked transi-

tively. This approach is coarse-grained and can potentially generate many false depen-

dencies. Such dependencies occur for two reasons. First, the analysis component tracks

query read sets conservatively, as described above. Second, a request can issue multiple

queries that may have no dependencies. For example, Figure 3.3 shows that request R2

depends on request R1, and R3 depends on R2, and thus R3 is also assumed to depend

on R1. However, this dependency may not exist if, for example, R2 immediately discards

the value that it read from R1 using Q2, while R3 only depends on Q4.

We propose using dynamic tainting to track program or application-logic dependencies

within a request to prune both these types of false dependencies from the dependency

graph. Program dependencies are caused by data flow in the application logic and can

be captured by instrumenting the application-logic engine. This approach essentially

validates a cross-request dependency.

Normally, tainting is used to detect whether untrusted data is used in sensitive opera-

tions without being properly sanitized, and it is performed during application execution.

Chapter 3. Approach 21

Figure 3.3: A request dependency graph.

For example, all variables assigned using untrusted network or user input can be marked

with a tainted bit and this bit is propagated using data flow. An attack is detected when

a sensitive operation, such as an SQL write query, uses tainted variables.

Our requirements are slightly different, which makes it hard to perform tainting during

the on-line phase. Specifically, our aim is to determine given two requests R1 and R2,

whether a write query Q2 issued by R2, depends on a write query Q1 issued by R1. If this

dependency is established and R1 is tainted, then the effects of Q2 need to be reverted

1. If we performed tainting on-line, then R1 and R2 could be arbitrary requests, and as

a result, each write query issued by any request would need to be tracked independently.

In other words, a taint bit would be needed for every write query, and these bits would

have to be maintained and propagated for all program variables and database rows. Even

with row-level tainting instead of field-level at the database-tier, this approach is clearly

hard to implement and will not scale well. Instead, we avoid the problem described above

by using replay-based tainting during the post-corruption phase, as described in Section

3.4.4.

1Note that this dependency can also occur via intervening read queries.

Chapter 3. Approach 22

3.4.3 Client Dependencies

Besides database and application dependencies, our recovery system also allows tracking

certain client dependencies across requests, such as login sessions and user accounts.

These dependencies allow grouping requests, providing a useful abstraction for starting

the analysis. An administrator can specify whether session or user dependencies should

be used to generate the initial set of tainted requests. For example, an administrator can

identify a user as the initial cause of the data corruption, so she would start the analysis

by marking the requests belonging to that user. Another use of this type of dependency

is for performing recovery. For instance, an administrator may determine that requests

in a particular session caused the corruption and may wish to revert all effects caused by

the session, assuming there were no future dependencies.

These client dependencies are generally not available at the application-logic or database

level. For example, web applications generally store an identifier for each registered user

in a database table. After a user logs into the application, requests read this table to ob-

tain a handle on user-specific state. These read requests will be considered independent

at the database and the application-logic tiers. Instead, we derive these dependencies

by using application-specific code in our monitor component, but without requiring any

changes to the applications themselves. Specifically, web applications use session and user

information for reasons such as authentication or handling concurrent requests. This in-

formation is available in request parameters (e.g., URL has session id), or request headers

(e.g., cookies), or database tables storing user or session information. The PHP monitor

executes application-specific code to derive this information, and then logs this informa-

tion with each request. As a result, the analysis component can derive the set of requests

associated with each session or user.

Chapter 3. Approach 23

3.4.4 Tainting

After corruption is detected, the administrator uses our recovery tools to identify one or

more initial requests that trigger the bug or vulnerability in the application. With these

initial requests, our system generates a coarse-grained dependency graph rooted at this

request using database dependencies, as described earlier. This graph provides a maximal

set of dependent requests. However, edges in this graph can be false dependencies, which

we then prune using tainting.

Our system performs tainting by replaying requests in the dependency graph to a

taint-based PHP interpreter. We have modified the interpreter to taint an application

variable that reads a tainted database row or field, and taint database rows or fields that

are modified by queries using tainted application variables. We store the taint information

persistently at the database via helper fields added to the tables. For row-level tainting

granularity, a taint field is associated with each row. Similarly, for field-level tainting,

each field has its own taint field. Specifically, all the rows or fields modified by a query

are marked tainted via their associated taint fields, if the query uses a tainted variable.

We provide more details of our implementation in Chapter 4.

The taint analysis component starts by tainting the initial requests and replaying

them. It then replays requests that have incoming edges in the dependency graph and

uses tainting to prune outgoing edges that are false dependencies. Recall that a request

in the dependency graph has an incoming edge when it reads database rows that were

modified by the request located at the source of the edge. When using tainting, at least

one of the rows associated with an incoming edge will be tainted. After a request is

replayed, all the outgoing edges of the request are pruned, if none of the write queries

issued by the request were tainted. If even a single write query was tainted, then all

the write queries are marked tainted, because our system performs recovery at a request

granularity.

This post-corruption analysis associates a single taint bit with each application vari-

Chapter 3. Approach 24

able and database row or field, because it has a well-known starting point, i.e., the initial

requests, and its goal is to identify other requests that depend on these requests.

3.4.5 Replaying Requests

Our system performs tainting while replaying requests, which requires capturing all re-

quest parameters. These parameters are logged by our application-logic monitor, which

captures all HTTP request parameters, including the parameters of POST and GET

requests. POST requests are used to submit data from clients to the server and typically

access and modify database state. GET requests are normally used to obtain data from

the server. Our system tracks GET requests, because some web applications use GET

requests for modifying state and also because we allow recovery at higher application-

specific granularities, such as login sessions, that can span multiple dependent requests,

as described in Section 3.4.3.

The replay process needs to use a database snapshot that captures the database state

just before the earliest initial tainted request was executed. It recreates this snapshot by

rolling back the database state using the recovery tools described later in Section 4.3.

The analysis component replays requests by issuing the queries or transactions in the

request issued in the correct serialization or transaction ID order. A scheduler orders all

the requests in the dependency graph in request ID order. It replays requests in this order,

but ensures that a request is delayed when it issues a transaction with an ID that is not

in the correct serialization order. The request ID and the transaction ID information is

available in the request-level mapping captured by the monitor (see Section 3.3). During

replay, when the pruning of edges causes one ore more nodes to be disconnected from

the graph, then those requests are removed from the scheduler queue. This approach of

initially generating a coarse-grained dependency graph and then successively pruning the

graph allows replaying the minimal number of requests. Note that requests that are not

in the dependency graph do not need to be replayed because, by definition, they do not

Chapter 3. Approach 25

affect and are not affected by the requests in the graph.

A web application is easier to replay deterministically than arbitrary OS processes,

because application requests are relatively independent. Each request is handled by a

separate process that is either discarded or re-initialized when handling another request,

and requests interact with each other mainly through the database, so rolling back the

database recreates the original state for replay. Even so, it is possible that our recovery

system does not capture all non-deterministic application behavior. Our system detects

any non-determinism while replaying the requests by comparing the queries generated

during replay with the queries logged by the monitor. If an inconsistency is detected, we

currently ensure safety by aborting the entire analysis process.

3.4.6 Dependency Policies

The aim of our analysis tools is to provide sufficient information to the administrator

to identify data corruption. To this end, our tools provide support for the different

dependency policies described below. We believe that the outputs of these different

policies will help the administrator determine the effects of the corruption and choose

the correct recovery actions.

1. Request-level dependency with row-level tainting granularity (request-

row): This policy is the most conservative dependency policy. It assumes that a

request is tainted, if it reads a tainted database row. All further database updates

by the request are marked as tainted regardless of whether tainted information is

used to update the database.

2. Program-level dependency with row-level tainting granularity (program-

row): This policy takes application-level data flow into consideration when gen-

erating the dependency graph. During a request, all variables that are initialized

using a tainted row are marked tainted and the taint is propagated throughout the

Chapter 3. Approach 26

request. Whenever a query with the tainted values is executed, the taint informa-

tion is saved in the database at a row granularity, which preserves taints across

requests.

3. Database-level dependency with row-level tainting granularity (database-

row): This policy propagates taints when queries read tainted rows and update

other rows. Since this policy does not regard application-level dependencies, such

as the dependencies between the queries of a request, it may fail to identify all the

effects of the corruption. Also, the recovery process reverts operations at the query

level rather than the request level, which can result in application-level inconsis-

tencies.

4. Program-level dependency with field-level tainting granularity (program-

field): This policy is similar to 2), the only difference being that the taint infor-

mation is stored in the database at a field granularity. This policy allows us to take

advantage of blind-writes, in which the value of a field is updated without reading

its value. If the updated value is untainted, the taint value of the field can be reset

even if it was originally set, which helps to reduce false positives. This policy also

helps in generating finer-grained whitelisting policies.

5. Database-level dependency with field-level tainting granularity (database-

field): This policy is similar to 3), the only difference being that the taints are

stored in the database at a field-level granularity.

3.4.7 Whitelisting

Our analysis tools can also incorporate administrator knowledge about the application

and help her determine the effects of data corruption. An administrator can whitelist

tables, columns, rows or even fields, to stop taint propagation at the database tier. There

are two possible ways to generate these whitelists. First, an administrator with sufficient

Chapter 3. Approach 27

knowledge of the application may be able to analyze the causes of false dependencies

generated by the dependency policies and generate the whitelist appropriately. When

an administrator starts the replay-based analysis, our replay trace files collect sufficient

information about taint propagation, at the database and the application-logic layers.

This information is very useful for generating whitelists. We have used this approach to

generate the whitelists used in our evaluation in Chapter 5.

Second, our system can analyze the monitoring logs to determine database entities

(i.e., tables, columns etc.) that are heavily shared across all requests to generate a list

of data items suitable for whitelisting.

These heavily shared data items can also be generated based on different types of

requests. The type of a request can be defined as an application-level operation. For

example, adding a comment, editing a post or updating permissions of a user can be

considered three different types of requests. If a column is heavily accessed by one type

of request, but not the others, then an administrator may choose to avoid propagating

taint when the first type of request accesses this column.

There are several ways to categorize requests by type. First, one can identify dif-

ferent page names that the application is executing to handle a certain type of re-

quest. For example, one application may be using a script file to add a comment (i.e.,

add-comment.php) and a different file to update a comment (i.e., update-comment.php).

Second, one can classify requests by looking at the queries that have been executed, their

ordering, and the database entities they have accessed. For example, an addition of a

comment may access the comments table via an INSERT operation, while an update

uses an UPDATE operation.

With this request classification, an administrator may choose to avoid propagating

taint based on certain sequences of queries, namely requests. In our comment example,

requests that update a comment affecting the comments table may be whitelisted, without

necessarily whitelisting the requests that insert a comment.

Chapter 3. Approach 28

Although whitelisting can potentially miss certain dependencies and lead to incorrect

recovery actions, we believe that whitelisting at a fine granularity, such as at the field

level, as can be implemented with our field-level tainting, will reduce this problem.

3.5 Recovery

The recovery component provides administrative tools for performing recovery. These

tools provide information about requests and sessions, such as their timeline, requests

associated with a session or user, requests or sessions that affected specific database tables

or generated a corrupted web page, helping the user identify and investigate specific

requests or sessions that are the root cause of the problem. Also, the root cause can be

determined by undoing each request, either one-by-one or by using a binary-search [50],

until the administrator determines which request caused the corruption.

After the root cause is detected, the administrator provides these initial requests or

sessions to the analysis component, which then generates a list of tainted requests via

replay. Then the recovery component uses the queries that belong to these requests to

generate the compensating transactions to revert their effects. The end result is that only

the effects of the initial requests are reverted. Next, we describe this selective recovery

process.

3.6 Selective Recovery

The database stores an undo log, but it does not provide a method for undoing committed

transactions because it guarantees that committed transactions are stored durably. Our

recovery process uses the request and transaction-level mappings and the undo log to

generate compensating transactions for the tainted transactions. Note that many web

applications do not use transactions. In that case, we treat each query as a separate

transaction.

Chapter 3. Approach 29

The compensating transactions for the tainted transactions are applied in reverse se-

rialization order on the current state of the database. While the compensation process

is relatively simple, it can cause a conflict when a tainted query deletes a row because

taint analysis does not create a dependency for deleted rows. Specifically, if the tainted

query had not executed, then a future query could have read the deleted row. While it

is possible to taint the results of such a query during replay, currently we have chosen

to ignore such deleted row dependencies for simplicity. Instead, when a compensating

transaction generates a conflict, the conflicting transaction is aborted, and the admin-

istrator is provided with a list of all such aborted transactions. A conflict occurs only

when the compensating transaction attempts to reinsert a deleted row, but an untainted

transaction had inserted a row after it was deleted with the same primary key. In this

case the INSERT fails during compensation. Compensating transactions are described

in more detail in Section 4.3.

Selective recovery is first performed in the same sandbox environment where the

analysis was performed. If the recovery actions solve the problem, they are applied to the

original application state that was stored before the analysis started. If a problem occurs

during the selective recovery process and the recovery action (i.e., the compensating

transactions for a request) does not remove the corruption, the administrator has two

ways to solve this issue. First, she can discard the sandbox environment and start the

analysis again, this time selecting different recovery actions. Second, she can revert the

effects of the compensating transactions (i.e., ’undoing the undo’) because the database

undo log will have the previous values. After that, she can select different recovery actions

to be performed to fix the problem.

Conceptually, our selective recovery method should yield the same results as redo

recovery that starts with a database snapshot taken just before the earliest initial tainted

request and replays all the untainted requests. We do not use redo recovery for two

reasons. First, we assume that the damage caused by the tainted requests is small

Chapter 3. Approach 30

compared to the work done by the untainted requests, and hence the compensation

process based on undoing the effects of the tainted requests will be more efficient than

replaying all the untainted requests. Second, redo recovery will not work correctly in

the presence of conflicts. For example, suppose a tainted request that deletes a row is

not replayed. A request that originally did not read this row, may read it during replay,

causing non-deterministic and potentially failed replay. Resolving these issues requires a

great deal of application-specific knowledge [26]. Our compensation based approach does

not replay requests and thus does not suffer from this problem.

Chapter 4

Implementation

We have implemented a prototype of our recovery system for the PHP scripting engine

and the MySQL database. This section describes the main aspects of our implementa-

tion, consisting of the monitoring, analysis and recovery components. Table 4.1 shows

the number of lines of code that we have changed to implement our recovery system’s

functionality in existing software code. Note the majority of the code lies in the recovery

component, and our changes to the PHP scripting engine and the MySQL database are

relatively small. Thus, we believe that it should be be relatively easy to port our system

to other languages and databases.

4.1 Monitor

The monitor is implemented by making a small number of modifications to the MySQL

database and instrumenting the PHP engine with Xdebug [23], a popular PHP debugging

tool. PHP is widely employed by web applications, and the monitor can be used by all

web applications that use PHP. The PHP module is used with Apache in pre-fork mode,

so that each request is handled by a separate process, and the database provides the

primary means for sharing information between these processes.

We made three main modifications to the MySQL database. These modifications are

31

Chapter 4. Implementation 32

Component Existing Software Changed Lines of Code

Database Monitor MySQL 287

Application-logic Monitor PHP interpreter 219

Application-logic Analysis PHP interpreter with taint support 519

Query Rewriter JSQLParser 1850

Recovery Component - 4757

Table 4.1: Modifications to existing software. The numbers indicate physical lines of code

that were added, modified or deleted. All numbers are approximate and may contain

comments.

necessary to capture the necessary information for generating the compensating trans-

actions during the recovery process. First, we modified the database to generate the

transaction-level mapping that maps transaction ID’s to row-level undo information.

This undo information is already generated and stored in the database undo log by the

InnoDB transactional storage backend of MySQL. Second, we modified the undo log

purge operation so that it purges the log only after a user-configurable time. Third, we

modified the MySQL protocol, so that each query returns its unique transaction ID to

the MySQL client used by the PHP interpreter. This unique identifier is important for

our recovery system because it is used by the PHP monitor to create the request-level

mapping as described next.

The PHP instrumentation consists of generating the request-level mapping that maps

a request ID associated with a request to the queries and their transaction ID’s executed

by the request. This mapping also stores the parameters of the request (e.g., the GET

and POST method parameters) for replaying the requests. In addition, application-

specific PHP code derives session and user information from parameters or cookie values

available in requests and logs them with each request. This is the only application-specific

code in our system, and it is used for session or user-level dependencies in our analysis.

This code is implemented in the PHP monitor, without needing any modifications to the

Chapter 4. Implementation 33

Original Query Rewritten Query

INSERT INTO table1 INSERT INTO table1 extended

(id, field1, field2) VALUES (2, 5, 10) (id, field1, field2, taint) VALUES (2, 5, 10, 1)

UPDATE table1 UPDATE table1 extended

SET field1 = 5 WHERE id = 2 SET field1 = 5, taint = 1 WHERE id = 2

DELETE FROM table1 DELETE FROM table1 extended

WHERE id = 2 WHERE id = 2

SELECT field1, field2 SELECT taint

FROM table1 WHERE id = 2 FROM table1 extended WHERE id = 2

Table 4.2: Query rewriting examples with row-level tainting. All write queries are as-

sumed to have a tainted value.

applications themselves.

4.2 Analysis

The analysis component initializes its state by reading the metadata associated with the

database tables used by the application, including the names of the fields, primary keys,

etc. Then, given an initial set of requests, it uses the query information available in the

request-level mapping to generate the coarse-grained dependency graph at the request-

level. The dependency graph is used to generate a replay script for all requests in the

dependency graph. This script uses the request parameters stored in the request-level

mapping.

Chapter 4. Implementation 34

Original Query Rewritten Query

INSERT INTO table1 INSERT INTO table1 extended

(id, field1, field2) (id, field1, field2, id taint, field1 taint, field2 taint)

VALUES (2, 5, 10) VALUES (2, 5, 10, 1, 1, 1)

UPDATE table1 UPDATE table1 extended

SET field1 = 5 WHERE id = 2 SET field1 = 5, field1 taint = 1 WHERE id = 2

DELETE FROM table1 DELETE FROM table1 extended

WHERE id = 2 WHERE id = 2

SELECT field1, field2 SELECT field1 taint, field2 taint

FROM table1 WHERE id = 2 FROM table1 extended WHERE id = 2

Table 4.3: Query rewriting examples with field-level tainting. All write queries are

assumed to have a tainted value.

4.2.1 Query Rewriting

Conceptually, the taint information of the rows or fields can be stored in the database.

This approach requires the interface between MySQL and the PHP interpreter to be

enhanced, so that MySQL knows when to set the taint information during an INSERT,

UPDATE or DELETE operation. Also, for SELECT operations, the taint information

needs to be returned. However, this approach requires drastic changes to MySQL code

to support all SQL functionality. For example, the more complex JOIN, GROUP BY,

ORDER BY and DISTINCT SQL operations require significant database modifications

to support tainting. Also, unlike row-level tainting, where an unused bit in the row

structure within the MySQL database can be utilized, field-level tainting would have

required incompatible changes to the database format.

Chapter 4. Implementation 35

We have implemented tainting using an alternative query rewriting approach, because

it does not require any modifications to the database code for the tainting functionality.

Our query rewriter employs a slightly modified version of JSQLParser [14]. We store

the taint information by modifying the database tables used by the web application to

store a per-row or per-field taint bit during replay. The PHP interpreter calls the query

rewriter to access or update the taint bits for each query. For example, for field-level

tainting, when an UPDATE query with a tainted value is issued, the rewriter adds a

new field (i.e., taint field) to the SET clause to set the taint values for each of the fields.

Similarly, a SELECT operation returns taint information of the rows in the result set

to the PHP interpreter. The query rewriter retrieves the taint information for the rows

and passes it to the PHP interpreter. The PHP interpreter issues the original SELECT

query and associates the result with the taint information returned by the query rewriter.

Compared to modifying the database, our rewriter implementation provides much greater

flexibility for implementing different dependency policies. Tables 4.2 and 4.3 show other

query rewriting examples with row-level or field-level tainting, respectively.

4.2.2 Handling of Blind-Writes

Our current implementation conservatively converts blind writes to regular writes and

retains taints for row-level tainting. However, our field-level tainting solution resets taints

for blind writes if the value being written is not tainted.

4.2.3 Propagation of Taint

On the PHP side, we use a PHP interpreter that supports tainting [46] during replay. We

modified the interpreter to initialize taint propagation by tainting queries issued by the

initial set of requests, and taint variables that are assigned via reading tainted database

rows or fields. The taint propagation mechanism taints a query when it is executed with

a tainted variable in its argument. When a query is marked tainted, it is added to a

Chapter 4. Implementation 36

tainted query log that is used by the recovery component. We also added some taint

propagation support for conversions from one type to another (i.e., type casting) and

some string operations (i.e., formatted strings).

4.2.4 Whitelisting

Currently, we manually inspect our replay trace files to determine which tables spread

the taint. Our whitelisting granularity is at the table level and the administrator can

specify which tables should not propagate the taint information at the database. We

have also implemented a statistical analysis tool to determine heavily shared database

items, such as tables and columns. Our implementation was able to determine most of

the tables that we manually extracted by examining the replay trace logs. We plan to

extend our query rewriter to accept {table, column} pairs for finer-grained whitelisting.

Such whitelisting is enabled by field-level tainting in the database.

We have also implemented a request profiling that identifies the type of a request

based on the queries executed, their order and types (i.e., INSERT, UPDATE, DELETE

or SELECT), and the database items (i.e., tables and columns) they accessed. We

confirmed that the types of requests that were identified were indeed different types

of application operations. We plan to incorporate request profiles into our whitelisting

scheme, so that the administrator can use types of requests along with the heavily shared

database items to determine when to propagate the taint.

4.3 Recovery

The recovery component provides administrative tools for performing recovery and per-

forms recovery by using compensating transactions that selectively revert the effects of

tainted requests, as described in Section 3.5. Next, we describe our method for generating

compensating transactions.

Chapter 4. Implementation 37

The compensating transaction for a committed transaction consists of write opera-

tions. For each update operation in the committed transaction, an operation that writes

the previous value of the updated row(s) is appended in reverse order to the program of

the compensating transaction [24]. The previous values are obtained from the undo log.

For example, row-level write operations include INSERT, DELETE and UPDATE. An

INSERT operation can be reverted by simply issuing a DELETE operation for that row,

since there is no previous value for the row. Similarly, a DELETE can be compensated by

issuing an INSERT operation with the previous row value. An UPDATE is compensated

by another UPDATE operation that restores the previous row value.

The monitor collects sufficient information needed for each compensation. For ex-

ample, the compensation for an INSERT operation requires the primary key of the row

so that it can be deleted, while DELETE and UPDATE operations need the location of

the undo information in the undo log so that the compensating queries can restore the

contents of the row.

The recovery process can also be used to create a database snapshot at any time T.

In this case, compensating transactions are issued for all transactions that occurred after

time T. If a database provides support for fast, say periodic, snapshots, the first snapshot

taken after time T can be used to generate the snapshot at time T.

4.4 Limitations

Our system has some limitations that stem from an incomplete implementation. For ex-

ample, our PHP monitor does not record all non-deterministic functions, such as time()

and rand(). This may cause verification of nonces for certain requests and session expiry

checks to fail, resulting in a different control flow in the application execution, causing

our replay trace of executed queries to diverge from the actual trace. Currently, we

have manually disabled these checks during replay. In a complete implementation, the

Chapter 4. Implementation 38

recorded values would be used, allowing deterministic replay.

Another limitation of our system is that the JSQL parser does not handle certain

MySQL specific operations. Using a full MySQL parser would avoid this limitation.

Currently, we have manually generated helper queries for the MySQL extensions for our

experiments.

Also, our recovery system does not handle changes made to the file system. For

example, a request may be updating the dimension information about an image file in

the database and resizing the image to the new dimensions. Our recovery system can

revert the updates to the database, but will not be able to resize the image back to its

old dimensions. In that case, our work is complementary to file system recovery systems,

such as Taser [32], where older versions of files can be recovered selectively.

Chapter 5

Evaluation

In this chapter, we evaluate the accuracy and the overheads of our recovery system. We

evaluate our dependency policies in terms of how accurately they determine and help

with recovery from the data corruption caused by real bugs and vulnerabilities found in

popular web applications. Then, we measure the performance and space overheads of

monitoring at the application-logic and the database tiers.

5.1 Experimental Setup

We use the MySQL database for our experiments. The default storage engine in MySQL

is called MyISAM, and it is non-transactional. Although some web applications explicitly

specify the storage engine during the installation process, others do not do so. These

applications do not make any assumptions about the underlying storage engine in the

database, which allows us to use the transactional engine in MySQL, called InnoDB,

as the default storage engine and utilize its undo log for recovery. For example, during

the installation of Gallery2, the administrator specifies the database and the tables are

created using InnoDB. On the other hand, Wordpress does not specify any information

about the storage engine during the installation process. Although Wordpress does not

use any transactions, we can run it with InnoDB to utilize InnoDB’s undo log to provide

39

Chapter 5. Evaluation 40

recovery. In this case, all queries are transformed implicitly into single query transactions

via InnoDB’s autocommit property.

5.2 Recovery Accuracy

We evaluate the accuracy of our dependency policies by triggering five real bugs in popular

web applications, including Wordpress, Drupal and Gallery2. In real life, some of these

bugs might manifest themselves so that the administrator recognizes that there was data

corruption right after the corrupting request was issued and no other requests were served

afterwards. In these cases, a single undo of that request would be sufficient to recover

from the corruption. Our evaluation focuses on how various dependency policies are

performing on recognizing the effects of data corruption, and therefore we use scenarios

where the administrator does not recognize the corruption right away and continues to

use the application, possibly generating dependencies.

We describe these bugs, failure scenarios and the correct recovery actions and report

how our recovery system works under these real-life scenarios. We assume that the

administrator already identified the root cause of the data corruption as described in

Section 3.5 and thus, the initially tainted request in our analysis is known. We focus our

evaluation on how different dependency policies perform and identify the dependencies

that might have been created after the initial corruption.

5.2.1 Correct Recovery Actions

For our evaluation, we define the correct recovery actions to be the actions that will

remove data corruption and its effects, bring the application into a consistent state and

minimize the amount of data that is lost. In order to measure the effectiveness of each

policy, we define three metrics. Our first metric is application-level inconsistencies that

may be introduced after the recovery. An inconsistency in the application is created when

Chapter 5. Evaluation 41

the recovery actions will create an inconsistent state in the application which will cause

problems in application functionality. It is important that the recovery actions leave

the application in a consistent state. This can be achieved by employing request-level

recovery actions because web applications generally expect that the requests execute

atomically. Database-level dependency policies operate at query granularity, and the

corresponding recovery actions may revert only certain queries in a request. This will

contradict with the assumption about requests executing atomically and thus potentially

create problems in the application. Therefore, one needs to consider these inconsistencies

as an important factor in deciding which dependency policy to use for the analysis.

Our second metric is the number of false positives. A false positive is a request

or query that is marked as dependent on the data corruption during the analysis, even

though it is not truly dependent. It is important to minimize the number of false positives

because false positives during recovery will cause loss of data that was unrelated to the

corruption. Our third metric is the number of false negatives. A false negative is a request

or query that is dependent on the data corruption, but is not marked as dependent. False

negatives will cause corruption to linger in the application even after recovery, possibly

causing more problems in the future.

In a recovery system, it is difficult to know which of these last two metrics is more

important. Some bugs do not have any dependencies and thus the correct recovery action

is to revert the initial request that corrupted data. On the other hand, some bugs generate

obscure dependencies. We show that these bugs can be complex and are very specific

to the application. As a result, the administrator needs to intervene with the recovery

process. We provide a discussion of alternative recovery actions another administrator

could have preferred at the end of each analysis. Our goal is to help the administrator

identify the dependencies and choose the correct recovery actions rapidly.

We believe that our dependency analysis approach is necessary and beneficial. First of

all, it is hard to know beforehand whether there were any dependencies generated after the

Chapter 5. Evaluation 42

corruption. These bugs can be complex and application-specific, so making an informed

choice on how to perform the recovery is important. We provide the administrator

with the necessary tools and detailed results of various dependency policies, so that

she can decide on the correct recovery actions quickly. Second, our evaluation may be

underestimating the benefits of the dependency analysis as the bugs we picked do not

generate many dependencies. However, we still believe that even with these bugs, we are

able to show the strengths and drawbacks of different dependency policies.

We summarize the results of various dependency analysis policies in Table 5.1 and

Table 5.2. In Table 5.1, the second column shows the total number of requests we had to

replay for the dependency analysis. The third column indicates the number of requests

that the administrator needs to undo to correctly recover from the data loss or corruption.

The next column shows the dependency policy that was used; ’none’ indicating that no

dependency information is taken into account for undo. The last two columns present

the accuracy of the policies in terms of false positives and negatives. These numbers are

in terms of requests. In Table 5.2, we present the results of database-level dependency

policies. Since database-level policies only create dependencies across queries, all the

numbers shown are in terms of queries. The last column shows the inconsistencies that

are encountered after undoing these queries. For each of these cases, we first give an

overview of the application and provide background information for the corresponding

bug, which helps explain the results of each dependency policy.

5.2.2 Wordpress Functionality Bug: Renamed Link Categories

Wordpress is a popular blogging application that allows users to create content (e.g.,

posts, pages, links) and associate them with tags and categories. Content can be grouped

Chapter 5. Evaluation 43

Case Total Number Requests to Dependency False False

of Requests Undo Policy Positives Negatives

none 0 0

Wordpress - 109 1 request-row 60 0

link category rename program-row 8 0

program-field 6 0

none 0 0

Drupal - 117 1 request-row 116/102 0

lost comments program-row 100/93 0

program-field 95/0 0

none 0 6

Drupal - 118 7 request-row 111/100 0

lost voting program-row 95/89 0

information program-field 89/0 0

none 0 0

Gallery2 - 91 1 request-row 90/13 0

permission program-row 88/11 0

program-field 82/10 0

none 0 0

Gallery2 - 151 1 request-row 148/0 0

resizing images program-row 139/0 0

program-field 119/0 0

Table 5.1: Recovery accuracy for request-level and program-level dependency policies.

Each replay starts with one initially tainted request. The false positives column show

numbers without and with table whitelisting, respectively.

Chapter 5. Evaluation 44

Case Queries Dependency False False Inconsistencies

to Undo Policy Positives Negatives after Undo

Wordpress - 23 database-row 0 15 The count value does

link category database-field 0 21 not match to the ac-

rename tual number of links.

Drupal - 24 database-row 116 0 -

lost comments database-field 0 0

Drupal - lost vo- 38 database-row 86 16 The poll votes table

ting information database-field 0 18 has duplicate entries.

Gallery2 - 9 database-row 97 0 The global se-

permission database-field 9 0 quence id has an

Gallery2 - 17 database-row 110 0 old value breaking

resizing database-field 20 0 future inserts

images requiring a new id.

Table 5.2: Recovery accuracy of database-level dependency policies. Each replay starts

with one initially tainted request. All numbers indicate queries.

into categories, which is used to summarize and present it in a more organized way.

Scenario: An administrator already has a number of links posted and associated with

a certain category, category one. The Wordpress interface requires the administrator to

click on the name of the category to edit it. The Wordpress bug [21] allows the adminis-

trator to rename the category name to an empty string. When she accidentally renames

category one into an empty string, she cannot edit it back and has to use the applica-

tion with the empty category name. However, the administrator can still associate links

with this category, because the application interface allows the administrator to select its

checkbox. In our scenario, she continues to add new links, associated with the renamed

category, as well as with other categories (e.g., {category two}, {old category one,

Chapter 5. Evaluation 45

category two}, {category two, category three}). She also continues to create new

content and modify other settings.

Correct recovery actions: Undo the rename operation.

Background: Wordpress maintains link entities, terms (i.e., tags and categories)

and their types (i.e., whether it belongs to posts, pages or links) in separate tables

(i.e., wp links, wp terms, wp term taxonomy). There is also another table storing the

relationships between the actual content and the terms (i.e., wp term relationships).

The count column in the wp term taxonomy table is associated with the number of links

belonging to a certain category as determined by querying the wp term relationships

table. This is used for easy access when generating a page displaying how many links

belong to a category.

Results: The request-row policy marks many requests (60) as falsely dependent. The

false positives in this case arise from an actively shared table (e.g., wp options). When

a request updating this table reads tainted information from the above mentioned tables,

it taints a row in the wp options table. As the request-row policy does not consider

whether this information has been used when updating the database, it conservatively

taints the request, thus, spreading the taint to the wp options table. Since all requests

query this table, they get tainted creating many false positives.

The program-row policy reduces the number of false positives from 60 to 8, because

data flow at the program-level prevents taint spreading to the wp options table. How-

ever, there are still eight false positives because of the row-level tainting granularity.

When the administrator adds links with other categories than the renamed one (i.e.,

{category two, category three}), these operations get tainted, because each of these

categories were previously used with the renamed category, such as {old category one,

category two} and {old category one, category three}. However, the addition of

the links associated with {category two, category three} are not related to the re-

named category and therefore, these requests are marked as falsely dependent.

Chapter 5. Evaluation 46

The finer-grained program-field policy has six false positives and no false negatives.

Field-level tainting improves accuracy, because the addition of links associated with

{category two, category three} are recognized as independent of old category one.

The six false positives are caused because these requests added new links associated with

old category one and updated one link that belonged to old category one.

Associating a new link with a category in the Wordpress application consists of

three steps. First, the relation between the link and the category is inserted into the

wp term relationships table. Second, this table is queried for the number of links as-

sociated with the category. Third, this number is used to update the count field of the

category in the wp term taxonomy table. The database-row policy only marks the third

step (i.e., the update) as tainted, because it reads a tainted row (i.e., the category’s row)

that was tainted previously when the administrator added another link associated with

the renamed category. However, the insert operation in the first step was not marked

as tainted, because it did not read any tainted rows at the database. Therefore, revert-

ing only the update operation will cause an inconsistency in the application, because

the actual number of links belonging to a category in the wp term relationships ta-

ble will not match the count value in wp term taxonomy table. On the other hand,

the database-field policy misses all other related operations, because the count value is

blindly overwritten, causing its taint value to be reset. Thus, related operations, such as

creating a relationship with that category, are missed. Although exploiting blind-writes

via field-level tainting to break dependencies can be desirable, employing a database-level

dependency policy can have false negatives.

Discussion: One can argue that the addition of the links associated with old cate-

gory one and updating an already existing link that belonged to this category should

be considered as dependent on the initial corrupting request, because there is an explicit

data dependency between the requests (i.e., old category one’s id is used to create the

relationship). However, this recovery action based on this dependency would lose the

Chapter 5. Evaluation 47

new links and the update. In this case, choosing the correct recovery action is non-trivial

because this problem is application specific. Instead, we provide detailed results for

the different policies and thus help the administrator make an informed decision about

the correct recovery action. We did not have to use whitelisting for this case, because

the number of tainted requests was small, allowing us to manually determine whether a

request is really dependent or not.

5.2.3 Drupal Data Loss Bug: Lost Comments

Drupal allows fine-grained access control for users via roles. A role has capabilities,

consisting of combinations of individual actions. Some of these actions are posting new

content, moderating comments and adding new users.

Scenario: When two users with the capability of moderating comments are visiting

the same page, the application shows a list of comments. When the first user selects

and deletes comment1, the application works as expected: comment1 is deleted and the

view is updated with the new list of comments. However, the list of comments is not

refreshed for the other user moderating the comments. If the second user selects and

tries to delete comment1, a Drupal bug [6] is triggered so that the application ends up

deleting all comments from the database. In our scenario, the first user generates new

content after deleting comment1, such as adding new stories and polls, and makes some

configuration changes and activates a new module. Meanwhile, other users comment on

both the old and new content.

Correct recovery actions: Recover the comments that were deleted because of

the bug. These will be in the persistent storage (i.e., the database) once the recovery is

complete and therefore, the temporary views of moderators are not considered important.

Background: Drupal maintains the session information in the sessions table. The

session information, which is retrieved at the beginning of each request, contains the

associated user’s id, uid. This identifier is later used to make the appropriate permission

Chapter 5. Evaluation 48

checks. At the end of each request, the sessions table is updated with a timestamp and

other session related information. The content (e.g., posts, pages, polls) is stored in the

node table with a unique identifier, nid, and user generated content (e.g., comments) is

stored in the comments table. There is a users table for user information, which also

has an access timetamp updated at the end of each request.

Results: Once the session information is tainted after the initial request, the request-

row policy marks every subsequent request that reads the tainted session information

as tainted. Note that the request-row policy does not consider whether this tainted

information is used to update the database to mark a request as tainted. This taint

spreads to other users’ requests via the node table when the front page of the application

is accessed, resulting in many false positives.

The program-row policy still has many false positives. The initial request taints the

session information, which also includes the associated user id, uid. This tainted user id

is used whenever new content is inserted into the node table, causing the new nid to be

dependent. This node id is then used if another user uses it when generating a content,

such as adding a new comment, which again causes the session information for that user

to be tainted, thus increasing the number of false positives. For this policy, users logging

in, viewing the content, reading the tainted information and logging out are not marked

as tainted, because these tainted values are not used to update the database. For the

requests that belong to a different session for the same user, the taint is spread, because

the initial request has tainted the user’s access timestamp. With row-level tainting, this

causes that any subsequent session for that user to be marked as tainted.

To our surprise, the finer-grained program-field policy did not reduce the number of

false positives much, even though the session information was being updated with a blind-

write at the end of each request, where the taint information could have been reset. Our

investigation revealed that this update operation was using a tainted value, namely the

user id, that got tainted when the initial request updated the session information. This

Chapter 5. Evaluation 49

taint then spreads resulting in false positives. The number of false positives is lower than

the program-row policy, because program-field policy takes advantage of blind-writes to

contain the taints in a specific session. For example, although the access timestamp for

a user may get tainted because of a tainted request, the blind-write with a clean value

in another request resets its taint, thus reducing the number of false positives.

The database-row policy marks all updates to the sessions table for that user as

tainted, since the session information was tainted in the initial request. However, it is

contained for this user, because each other user has her own separate session information.

Additionaly, queries updating the users table in subsequent sessions of the same user get

tainted, because of the update to the access time. On the other hand, with field-level

tainting, the update resets the taint, because it is a blind-write with a clean value.

After we ran our analysis with these different dependency policies, we decided to

whitelist the sessions, history and watchdog tables, because our replay log files showed

that they were spreading the taint. These log files contain sufficient information to iden-

tify why a request was marked as tainted during replay. For example, the administrator

would know whether a query was executing with a tainted value or read a tainted row

at the database. Using these logs, we determined that the tainted user id was used in

updating the session information, described above.

We ran our analysis again and the request-row and program-row policies with whitelist-

ing still produced many false positives. We realized that these false positives were gen-

erated by the users table. Our initial replay logs did not indicate that this table was a

source for false positives. On the other hand, the program-field policy did not produce

any false positives with the same tables being whitelisted.

Discussion: Although whitelisting tables is a coarse-grained method of reducing false

positives, it still shows potential. One can expect an administrator with sufficient knowl-

edge of the application to determine these whitelists. Furthermore, our replay log files

help the administrators to determine how the taint is spreading. Although we determined

Chapter 5. Evaluation 50

these tables manually by inspecting the log files, one can generate these statistically via

investigating traces and determining which tables are being shared extensively (i.e., be-

ing written to and read from by many requests/queries). Also, one can create these

whitelists at the row or at the column granularity, where administrator can specify a set

of rows or columns to be ignored while propagating the taint. Finer-grained tainting at

the database (i.e., row vs. field-level) will allow finer-grained whitelists. For example, one

could have whitelisted the uid column in the sessions table. Finer-grained tainting is

also more resilient to incomplete whitelists. In our case, we did not realize that the users

table was a source of taint spreading, but the program-field policy with an incomplete

whitelist did not generate any false positives.

5.2.4 Drupal Data Loss Bug: Lost Voting Information

Drupal allows an administrator to create a poll with multiple choice options via the poll

module. One can set access controls on who can vote, such as only registered users or

any other role the administrator has created and assigned voting capability. Also, a user

can only vote once and the application asserts this by keeping track of which users have

voted.

Scenario: An administrator creates a poll for the registered users. After some users

have voted, the administrator modifies the poll contents (e.g., to fix a typo, clarify the

question, etc.). The bug [7] causes the information about which users have voted to

be lost, allowing the users to vote again. However, the vote counts are still preserved

creating an inconsistency in the application. For example, if there are only 5 registered

users, the sum of the votes should not be greater than 5.

Correct recovery actions: Determine the ’second’ votes and restore information

about who has voted.

Background: The poll information is saved in three different tables. The content is

saved in the poll choices table, such as the content of the choices, the number of votes,

Chapter 5. Evaluation 51

etc. The poll votes table keeps track of who has voted and uses this information to

prevent users from voting twice. The poll table keeps the association between the node

table and the poll-type content. For the rest of relevant information, see Section 5.2.3.

Results: The request-row policy marked all requests as tainted, because of the shared

session information, similar to the case described in Section 5.2.3. The application puts

the updated poll to the front page of the site. The taint is propagated between different

users, because every session starts requesting the front page.

The program-row policy would taint requests that are reading and using the poll

information during the voting process. When different users vote on the same poll, their

sessions also get tainted, resulting in many false positives. The program-field policy also

has many the false positives as the tainted user id retrieved from the session information

is used to update the session information at the end of the request.

The database-row policy marked queries in many distinct requests to be tainted.

Similar to the previous case, all false positives were related to the sessions and users

table. On the other hand, the database-field policy only marked the queries that updated

the number of votes in the poll choices table. However, reverting the effects of only

these queries would create an inconsistency in the application, because the voting request,

not only increments the number of votes, but also inserts the information about who has

voted into the poll votes table. A, this table would have duplicate entries.

Discussion: Again, we chose the same tables to be whitelisted, namely sessions,

history and watchdog. The request-row policy still produced many false positives via

the users table, while updating the access timestamp field. On the other hand, the

field-level policy resets the taint for the access timestamp field, because it is updated

with a blind-write. Therefore, it does not produce any false positives.

As we can see from this case and the case described in the previous section, the same

dependency policies produce different results in terms of false positives, even though

the scenarios involve the same application. This shows that the nature of the bug the

Chapter 5. Evaluation 52

administrator is trying to recover from plays an important role on determining what kind

of dependencies really exist and thus effects the correct recovery actions. We can help

the administrator in this process, by providing detailed results and analysis logs for each

policy and how they generate the dependencies.

5.2.5 Gallery2 Functionality Bug: Removing Permissions Breaks

the Application

Gallery2 has a fine-grained access control mechanism. An administrator can give various

capabilities to specific users and/or groups. Examples of these capabilities include view-

ing an item, commenting, moderation of comments and rating. These capabilities apply

to specific pictures or whole albums.

Scenario: An administrator wishes to make several changes to the photo gallery

settings. She temporarily removes other users’ permissions to view the entire gallery,

makes her changes, such as creating sub-albums under the main gallery, adding users

and groups and then logs out. The Gallery2 bug [12] causes the application to show an

error message after the administrator logs out and to stop working completely, making

the web interface to the application no longer available.

Correct recovery actions: Restore the permission to view the gallery. This ad-

ministrator prefers to be less conservative and therefore, does not consider the addition

of the sub-albums relevant to the corruption.

Background: Gallery2 uses a global sequence id for every item (e.g., picture, album,

users, groups) that is inserted into the database making this id the primary key for

these items in their respective tables. It keeps track of the last used value with the

g2 SequenceId table. There is also a global g2 Entity table that keeps track of each item

and its associated information. For entities, such as sub-albums and comments belonging

to an album, a g2 ChildEntity table stores the relationships. The table g2 SessionMap

tracks open sessions, associating each session with a specific user id, g id, which is then

Chapter 5. Evaluation 53

used throughout the request.

Results: The request-row policy marks almost every request as tainted. The reason

is that the initial request taints the session information. The taint is spread to other

requests, because the session information is read at the beginning of each request to fill

in the current user information.

The program-row and the program-field policies also have large numbers of false

positives. The main reason, similar to the Drupal bugs, is that the user id retrieved

from the tainted session information is propagated throughout the request and is used

to update the session information at the end of the request. The user id value is tainted

and, thus this update taints the request.

The database-row policy marks the update queries to the g2 SessionMap and g2 Se-

quenceId tables as tainted. One can argue that the session information is temporary and

can be ignored during the recovery process. However, this is not true for the sequence

update queries, because reverting only these will create an inconsistency in the applica-

tion. The reason is that every insertion of an item (e.g., album, comment, picture, etc.)

will increment the sequence id. If this value is reverted back to its original state before

the corruption, a new item being inserted will get an id that has already been assigned to

another item. This will certainly cause the application to behave in an undesired fashion

and fail, because another item uses the same id in the g2 Entity table.

On the other hand, the database-field policy only marks the sequence id updates,

because these queries read the old value of the field during the update. The policy

resets the taint for the session information, because the update is a blind-write and the

value used in the update cannot be tainted, because the database-level policy does not

propagate the taint throughout the program execution.

Discussion: Based on our logs, we whitelisted the g2 SessionMap and g2 Sequence-

Id tables which significantly reduces the number of false positives. The false positives

are caused by the parent-child relationship between the main gallery and the sub-albums

Chapter 5. Evaluation 54

the administrator added. During the addition of the sub-albums, the id of the main

gallery, which was tainted by the initial request, is used to insert new entries to the

g2 ChildEntity table, resulting in false positives. These false positives could be pre-

vented via whitelisting by the administrator.

We believe that this situation is application-specific in terms of choosing the correct

recovery actions. Another administrator might think that these requests are really de-

pendent because viewing the sub-albums is also prevented when the parent album is not

viewable. Therefore, the addition of the sub-albums are dependent on the first request

that removed the permissions from the parent (i.e., main) album. However, the number

of false positives is small and manageable. Furthermore, our replay log files give enough

information about how taint spreads to the administrator, so that she can decide for the

correct recovery actions.

We should note that the database-row and database-field policies not only had false

positives, but undoing these false positives would create the inconsistencies described in

Table 5.2.

5.2.6 Gallery2 Functionality Bug: Resizing Images Breaks Ex-

isting Links to Images

Gallery2 works as a web application where users can organize their pictures into albums

and custom web pages. One useful functionality is to provide different sized versions of

images. These images can be linked from other web sites, where the application would

work as a storage system. Gallery2 is using image id’s in the URLs of resized images.

Because of a bug in the resizing procedure of the application, the resized images receive

new id’s, causing their their URLs to change. This breaks the existing links to old versions

of resized images.

Scenario: A Gallery2 administrator has multiple albums and multiple images in her

albums. She has used the links to resized versions of these images in other web sites. She

Chapter 5. Evaluation 55

wishes to create a new resized version of her pictures and recreates the resized versions

for one of her albums. However, the bug in Gallery2 resizing procedure [11, 13] causes

the existing links to be broken. She continues to interact with her gallery installation

regularly by adding users, groups and albums, while other users view and post comments

to these. After a while, she realizes that all the external links to the images she had

posted are broken.

Correct recovery actions: Revert back the newly created versions.

Background: Additional to the information in Section 5.2.5, there are two tables

that are shared among all users. These are the g2 AccessMap and g2 AccessSubscriber-

Map tables, where the permissions of the users are kept.

Results: The request-row policy marks almost all requests to be falsely tainted,

mostly because the session information is shared by all requests. The taint spreads to

other users’ sessions, when they read the g2 AccessMap and g2 AccessSubscriberMap

tables at the beginning of their sessions. The program-row and the program-field policies

contain the taint in one session of the administrator, because the tainted information ob-

tained via reading the shared tables (i.e., g2 AccessMap and g2 AccessSubscriberMap)

is not used to update the database. However, all requests in that session is tainted

because of the tainted user id.

Similar to the previous case, the database-row policy marked the queries that updated

the session information and the global sequence id. The database-field policy marked

updates to the global sequence id. However, we should note once again that reverting

the effects of the global sequence id would create an inconsistency in the application by

breaking future insertion operations.

Discussion: In this particular case, whielisting the g2 SessionMap and g2 Se-

quenceId tables reduces the number of false positives drastically to 0. Although this

may make the dependency analysis seem like redundant, our replay trace logs indicated

that these tables should be whitelisted.

Chapter 5. Evaluation 56

Both Gallery2 cases once again show that the nature of the bug plays an important

role in the correct recovery action. Although in some of the cases that we have described

the correct recovery action is to only revert the initial request, doing so without thor-

oughly analyzing the dependencies might generate other problems. With our different

dependency policies, we can help the administrator gather the necessary information to

choose the correct recovery action.

5.2.7 Remarks

We have applied the different dependency policies and to several bug and misconfiguration

scenarios across several applications. We have shown that the request-level dependency

policies suffer from high false positive rates. On the other hand, the database-level

policies can have many false negatives. Furthermore, web applications generally expect

that requests execute atomically and thus recovery should be performed at a request

granularity to minimize inconsistency in the application after recovery. We have also

shown that the program-field dependency policy has the best results. It performs recovery

at the request granularity with the least number of false positives.

Although database-level policies can cause application-level inconsistency, they tend

to have fewer false positives than the request- and program-level policies. Thus, an

administrator can compare the outputs of the database- and the program-level policies

to derive the correct recovery actions more accurately and rapidly. On the other hand,

the request-level policies can be useful if the replay needed for the program policy cannot

be performed successfully (e.g., incomplete implementation).

5.3 Performance

In this section, we measure the performance overhead and the disk space requirements

of our monitoring tools. Our experiments use the TPC-W industry benchmark. We

Chapter 5. Evaluation 57

Figure 5.1: Throughput results.

measure the throughput overhead of our MySQL and PHP monitors. We also measure

the logging overhead caused by our instrumentation of the MySQL and PHP interpreter.

The log at the PHP interpreter tracks requests, sessions and users, while the MySQL

logs track update queries and the rows that are modified. We also measure the logging

overhead that results from disabling of the undo log purge operation in the database.

All tests were conducted on a server with Intel Pentium 4 2.80 GHz with dual CPU

and 1.5 GB of RAM on Ubuntu Linux 8.04 with Apache server 2.2.8 running in pre-

fork mode. Both CPU’s were saturated using 100 emulated clients running on an Intel

Pentium 4 3.0 GHz with 4 CPU’s and 2 GB of RAM. The client machine and the server

were connected via a 1000Mb LAN connection. All results reported are the average of

at least 15 trials that run for 30 minutes.

Chapter 5. Evaluation 58

Figure 5.2: Latency results.

5.3.1 Throughput Overhead

To measure the performance overhead of each monitoring component at the application

and the database tiers, we ran tests by enabling each of the monitors separately and then

we enabled both of them together. The throughput and latency results can be found

in Figures 5.1 and 5.2, respectively. Our results show that our instrumentation incurs

a maximum of 4% overhead in throughput and latency, when both of our monitors are

enabled. The largest portion of the overhead is caused by our PHP instrumentation. We

believe that this instrumentation can be optimized further.

The reason that our database instrumentation improves performance slightly (com-

pare the first and second bars and the third and the fourth bars in Figures 5.1) is that our

monitor disabled the periodic purge operation that would remove the undo information

of committed transactions. To verify this, we conducted another set of experiments in

which we disabled the purge operation for the standard MySQL database. As expected,

Chapter 5. Evaluation 59

Monitors Increase in Undo PHP Number of Total Space

Enabled Undo Log Index Log Log Requests Overhead per

Size (MB) Size (MB) Size (MB) Request (KB)

None 0.94 0 0 56352 0

MySQL 32.0 2.67 0 56708 0.63

PHP 0.53 0 159.41 53184 3.08

PHP & MySQL 29.87 2.53 163.55 54114 3.71

Table 5.3: Disk space overhead

the throughput result was better with the purge operation disabled, with the throughput

increasing by about 1%. We also enabled all monitors (i.e., MySQL & PHP), but left the

purge operation enabled. In this case, there was a slight increase in throughput overhead

from 4% to 5%.

5.3.2 Disk Space Overhead

Table 5.3 shows the disk space overhead of the log files generated by our monitors. The

disk overhead arises from disabling the undo log purge and keeping the mapping between

transactions and modified rows in the database and the PHP log. The database logs

account for roughly 0.63 Kbytes per request (i.e., (32 MB + 2.67 MB)/56708), while the

PHP log accounts for 3.08 bytes per request (i.e., (0.53 MB + 159.41 MB)/53184) for

the TPC-W benchmark. Our PHP log uses textual data and the logging operation can

be significantly optimized.

For the 30 minute experiment, our total log size is around 196 MB (i.e., 29.87 MB

+ 2.53 MB + 163.55 MB). This number extrapolates to 9.19 GB per day. When the

PHP log file is compressed, our total log size decreases to around 48 MB (i.e., 29.87 MB

+ 2.53 MB + 15.12 MB) for the experiment and 2.23 GB per day. Given current disk

Chapter 5. Evaluation 60

capacities, these logs can be saved on a 250 GB disk for about 104 days. We believe that

this overhead is acceptable for providing a generic recovery system for web applications.

Chapter 6

Conclusion

A misconfiguration or a bug causing data loss or corruption in web-based applications

can affect a large number of users, because these applications store data at the server

side. Although useful for recovery, data backup solutions have shortcomings when it

comes to diagnosing the actions and identifying the specific changes caused by them.

We have described the design of a generic recovery system for web applications that

helps administrators to selectively recover corrupted data caused by a bug or a mis-

configuration. Our system tracks and correlates requests across multiple tiers of the

application with modest changes to existing software to help the administrator to deter-

mine correct recovery actions. Our recovery system reuses undo logs of the database to

recover from data corruption. Our analysis tools assist the administrator in identifying

requests that led to data corruption and provide multiple application and database de-

pendencies to identify the effects of data corruption more effectively and rapidly. Our

prototype implementation with MySQL and PHP interpreter shows that this generic

recovery functionality can be obtained with little overhead and no modifications to the

web applications themselves. Our evaluation showed that our system can help diagnose

and recover from various corruption scenarios and real bugs.

61

Bibliography

[1] Amazon hit by pricing error. http://news.zdnet.co.uk/

internet/0,1000000097,39226977,00.htm, last access August 23, 2009.

[2] Amazon shuts after price error. http://news.bbc.co.uk/

2/hi/business/2864461.stm, last access August 23, 2009.

[3] Best Buy will not honor $9.99 big-screen TV deal. http://edition.cnn.com/2009/

US/08/13/bestbuy.mistake/, last access August 23, 2009.

[4] Community plumbing. http://drupal.org/.

[5] Dell customers get snappy at pricing error. http://news.zdnet.co.uk/

internet/0,1000000097,39181032,00.htm, last access August 23, 2009.

[6] Drupal Bug Report: Big bug in management comments.

http://drupal.org/node/67745, last access August 23, 2009.

[7] Drupal Bug Report: Editing a poll clears all old votes.

http://drupal.org/node/67895, last access August 23, 2009.

[8] Drupal Group: Remove warning modal dialogs and replace them with undo.

http://groups.drupal.org/node/21913, last access August 23, 2009.

[9] Drupal Project: Deletion API for core. http://drupal.org/node/147723, last

access August 23, 2009.

62

Bibliography 63

[10] Drupal Project: Drupal gets a trashbin, and other delete goodies!

http://drupal.org/node/35422, last access August 23, 2009.

[11] Gallery2 Bug Report 1574209: Rebuilding thumbs/resized changes path to

resized image. http://sourceforge.net/tracker/index.php?func=detail

&aid=1574209&group id=7130&atid=107130, last access August 23, 2009.

[12] Gallery2 Bug Report 2016834: One easy step to break G2 with al-

bum permissions. http://sourceforge.net/tracker/index.php?func=detail

&aid=2016834&group id=7130&atid=107130, last access August 23, 2009.

[13] Gallery2 Support Node 53486: Rebuilding Thumbs/Resized causes

new ItemIDs to be created which breaks old links and images.

http://gallery.menalto.com/node/53486, last access August 23, 2009.

[14] Jsqlparser project. http://jsqlparser.sourceforge.net/.

[15] MySQL 5.0 Reference Manual :: 13.2.4.4 FOREIGN KEY Con-

straints. http://dev.mysql.com/doc/refman/5.0/en/innodb-foreign-key-

constraints.html, last access August 23, 2009.

[16] Wordpress - blog tool and weblog platform. http://wordpress.org.

[17] Wordpress Codex - Managing Plugins. http://codex.wordpress.org/

Managing Plugins, last access August 23, 2009.

[18] Wordpress Codex: IRC Meetup. http://codex.wordpress.org/IRC Meetups/2007/

September/September26RawLog, last access August 23, 2009.

[19] Wordpress Ticket 4720: Users without unfiltered html capability can post arbitrary

html. http://trac.wordpress.org/ticket/4720, last access August 23, 2009.

Bibliography 64

[20] Wordpress Ticket 4748: Unprivileged users can perform some actions on pages they

aren’t allowed to access. http://trac.wordpress.org/ticket/4748, last access

August 23, 2009.

[21] Wordpress Ticket 5809: Categories affect tags of the same name.

http://trac.wordpress.org/ticket/5809, last access August 23, 2009.

[22] Wordpress Ticket 6662: Users without capability ”create users” can add new users.

http://trac.wordpress.org/ticket/6662, last access August 23, 2009.

[23] Xdebug - Debugger and Profiler Tool for PHP. http://www.xdebug.org.

[24] Paul Ammann, Sushil Jajodia, and Peng Liu. Recovery from malicious transactions.

IEEE Transactions on Knowledge and Data Engineering, 14(5):1167–1185, 2002.

[25] Paul T. Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. Using mag-

pie for request extraction and workload modelling. In Proceedings of the Operating

Systems Design and Implementation (OSDI), pages 259–272, 2004.

[26] Aaron B. Brown and David A. Patterson. Undo for operators: Building an undoable

e-mail store. In Proceedings of the USENIX Technical Conference, pages 1–14, June

2003.

[27] Anupam Chanda, Khaled Elmeleegy, Alan L. Cox, and Willy Zwaenepoel. Cause-

way: Support for Controlling and Analyzing the Execution of Web-Accessible Ap-

plications. In Middleware 2005, 2005.

[28] Mike Y. Chen, Anthony Accardi, Emre Kiciman, Jim Lloyd, Dave Patterson, Ar-

mando Fox, and Eric Brewer. Path-based failure and evolution management. In

Proceedings of the Networked Systems Design and Implementation (NSDI), 2004.

Bibliography 65

[29] Tzi cker Chiueh and Dhruv Pilania. Design, implementation, and evaluation of a

repairable database management system. In Proceedings of the Annual Computer

Security Applications Conference, pages 179–188, 2004.

[30] Weidong Cui, Vern Paxson, Nicholas Weaver, and Randy Katz. Protocol-

independent adaptive replay of application dialog. In Proceedings of the Network

and Distributed System Security Symposium, February 2006.

[31] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza Basrai, and Peter M.

Chen. ReVirt: Enabling intrusion analysis through virtual-machine logging and

replay. In Proceedings of the Operating Systems Design and Implementation (OSDI),

December 2002.

[32] Ashvin Goel, Kenneth Po, Kamran Farhadi, Zheng Li, and Eyal de Lara. The Taser

intrusion recovery system. In Proceedings of the Symposium on Operating Systems

Principles (SOSP), pages 163–176, October 2005.

[33] Vivek Haldar, Deepak Chandra, and Michael Franz. Dynamic taint propagation

for java. In Proceedings of the Annual Computer Security Applications Conference,

pages 303–311, 2005.

[34] K. Salem Hector Garcia-Molina. Sagas. In Proceedings of the ACM SIGMOD In-

ternational Conference of Data, pages 249–259, 1987.

[35] Samuel T. King and Peter M. Chen. Backtracking intrusions. In Proceedings of the

Symposium on Operating Systems Principles (SOSP), pages 223–236, October 2003.

[36] Henry F. Korth, Eliezer Levy, and Abraham Silberschatz. A formal approach to

recovery by compensating transactions. In The VLDB Journal, pages 95–106, 1990.

[37] Peng Liu, Paul Ammann, and Sushil Jajodia. Rewriting histories: Recovering from

malicious transactions. Distributed and Parallel Databases, 8(1):7–40, 2000.

Bibliography 66

[38] David B. Lomet. MLR: a recovery method for multi-level systems. SIGMOD Rec.,

21(2):185–194, 1992.

[39] Bharat Mediratta. Gallery photo album organizer. http://gallery.menalto.com/,

2004.

[40] Susanta Nanda, Lap-Chung Lam, and Tzi cker Chiueh. Dynamic multi-process

information flow tracking for web application security. In Proceedings of the

ACM/IFIP/USENIX international conference on Middleware, pages 1–20, 2007.

[41] James Newsome and Dawn Song. Dynamic taint analysis for automatic detection,

analysis, and signature generation of exploits on commodity software. In Proceedings

of the Network and Distributed System Security Symposium, February 2005.

[42] Anh Nguyen-tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley, and David

Evans. Automatically hardening web applications using precise tainting. In Pro-

ceedings of the IFIP International Information Security Conference, 2005.

[43] A. Smirnov and T. Chiueh. A portable implementation framework for intrusion-

resilient database management systems. Proceedings of the IEEE Dependable Sys-

tems and Networks, pages 443–452, 2004.

[44] John D. Strunk, Garth R. Goodson, Michael L. Scheinholtz, Craig A. N. Soules, and

Gregory R. Ganger. Self-securing storage: Protecting data in compromised systems.

In Proceedings of the Operating Systems Design and Implementation (OSDI), pages

165–180, 2000.

[45] Ya-Yunn Su, Mona Attariyan, and Jason Flinn. Autobash: improving configuration

management with operating system causality analysis. In SOSP ’07: Proceedings

of twenty-first ACM SIGOPS symposium on Operating systems principles, pages

237–250, 2007.

Bibliography 67

[46] Wietse Venema. Taint support for PHP. ftp://ftp.porcupine.org/

pub/php/index.html, last access August 23, 2009.

[47] W. J. Lee, J. Loaiza, M. J. Stewart, W. Hu, W. H. Bridge, Jr. Flashback Database

- US Patent 7181476, 2007.

[48] Helen J. Wang, John C. Platt, Yu Chen, Ruyun Zhang, and Yi-Min Wang. Au-

tomatic misconfiguration troubleshooting with PeerPressure. In Proceedings of the

Operating Systems Design and Implementation (OSDI), pages 245–258, December

2004.

[49] Gerhard Weikum, Christof Hasse, Peter Broessler, and Peter Muth. Multi-level

recovery. In PODS ’90: Proceedings of the ninth ACM SIGACT-SIGMOD-SIGART

symposium on Principles of database systems, pages 109–123, 1990.

[50] Andrew Whitaker, Richard S. Cox, and Steven D. Gribble. Configuration debugging

as search: finding the needle in the haystack. In OSDI’04: Proceedings of the 6th

conference on Symposium on Opearting Systems Design & Implementation, pages

6–6, Berkeley, CA, USA, 2004. USENIX Association.

[51] Yichen Xie and Alex Aiken. Static detection of security vulnerabilities in scripting

languages. In Proceedings of the USENIX Security Symposium, 2006.

[52] Ningning Zhu and Tzi-Cker Chiueh. Design, implementation, and evaluation of

repairable file service. In Proceedings of the IEEE Dependable Systems and Networks,

pages 217–226, June 2003.

