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Abstract

Serverless computing is increasingly seen as a pivot cloud
computing paradigm that has great potential to simplify
application development while removing the burden of oper-
ational tasks from developers. Despite these advantages, the
use of serverless computing has been limited to few appli-
cation scenarios exhibiting stateless and parallel executions.
In addition, the significant effort and cost associated with
re-architecting existing codebase limits the range of these
applications and hinder efforts to enhance serverless comput-
ing platforms to better suit the needs of current applications.

In this paper, we report our experience and observations
from migrating four complex and stateful microservice appli-
cations (involving 8 programming languages, 5 application
frameworks, and 40 application logic services) to Apache
OpenWhisk, a widely used serverless computing platform.
We highlight a number of patterns and guidelines that facili-
tate this migration with minimal code changes and practical
performance considerations, and imply a path towards fur-
ther automating this process. We hope our guidelines will
help increase the applicability of serverless computing and
improve serverless platforms to be more application friendly.
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1 Introduction

Serverless platforms, such as AWS Lambda [29] and Apache
OpenWhisk [4], allow developers to quickly build and deploy
applications at scale while eliminating the need for them to
manage infrastructure. With serverless computing, devel-
opers can focus on the implementation of application logic,
which is packed and uploaded to serverless platforms for
execution. The platforms are responsible for managing the
infrastructure resources and scaling users’ applications when
needed. Because of its ease-of-use and operational simplicity,
serverless computing has generated tremendous interest in
both industry and academia [2, 6, 10, 13, 16, 31].

Despite its popularity, the serverless computing concept
has only been applied to a few simple scenarios that mostly
exhibit the needs of stateless and embarrassingly parallel
executions [10]. There is an increasing demand for applying
serverless computing to more complex and stateful appli-
cations that already exist [31]. Today, to take advantage of
serverless computing, developers of these existing applica-
tions have to re-architect their applications to match the re-
quirements of serverless computing platforms. This rebuild-
ing of existing applications is time-consuming and ad-hoc,
hindering the developers’ adoption of serverless computing.
A principled approach to this migration can help developers
in their effort. At the same time, it can also provide insights
for the design of serverless platforms in the future.

In this paper, we target the migration of complex microser-
vice applications onto serverless platforms. Today, the de
facto standard of building cloud applications is to use the
microservice architecture [28]. This architecture allows the
application to be decomposed into a set of loosely-coupled
components with well-defined interfaces. Although each
component can be developed and operated individually, this
architecture still requires developers operating infrastruc-
ture resources (e.g., containers, virtual machines), monitor-
ing the application and scaling the components as needed.
Supporting the migration of such existing applications onto
serverless platforms will benefit developers as well as in-
crease the applicability of serverless computing.

There are two challenges in providing this support: First,
it is costly to build a new serverless version of a complex
application; thus, it is preferred to minimize the modifications
to the codebase and reuse existing code as much as possible.
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express.post('/check', checkFn)
express.get('/dict', getDictFn)

express.listen('0.0.0.0:3005"')

Figure 1. A simplified microservice architecture of Overleaf,
with a focus on the flow of a spelling task execution.

Second, the migration should achieve similar performance
compared with the existing microservice applications; other-
wise, using serverless computing may not satisfy application
requirements. Addressing these two challenges, combined
with the inherent features of serverless computing such as
auto-scaling, will make serverless platforms deliver their full
benefits for even existing complex applications, and reduce
their operational and management costs.

As a first step to address these challenges, we have mi-
grated four complex open-source microservice applications
onto Apache OpenWhisk serverless platform [4]. These ap-
plications include a collaborative cloud-based LaTeX edit-
ing application (Overleaf, formerly ShareLaTeX [25]), an
online social network application (Social Network [12]), and
two example e-commerce applications (LAB Insurance Sales
Portal [18] and Robot Shop [32]). Together, they involve 8
programming languages, 5 application frameworks, and 40
application logic services.

During our effort, we made a number of observations
on typical application design patterns and identified sev-
eral associated migration guidelines, covering aspects about
communication, request routing and handling, state manage-
ment, exception handling and operational tasks. Preliminary
experiments show that applying our migration guidelines
results in fully (or mostly) serverless versions of these appli-
cations that can achieve comparable latency under compute-
intensive workloads and provide better scalability under
varying workloads.

2 Background and Motivations
2.1 Microservice Applications

A typical microservice application consists of a number of
long-running microservices (up to hundreds or even thou-
sands [5, 26]), covering computation, communication and

storage functionalities [27, 28]. These microservices are loosely-

coupled and communicate with each other via well-defined
APIs, so that each microservice can be developed and op-
erated individually. Figure 1 shows the microservice archi-
tecture of the Overleaf application [25]. For simplicity, we
show only four microservices whereby NginX acts as a load
balancer, web acts as a dispatcher for downstream services,
spelling is a sample service that listens on port 3005 and

routes the received requests to internal handlers for execu-
tion, and MongoDB is responsible for maintaining and syn-
chronizing global state among different microservices.
Each microservice typically runs as a server. This type
of deployment precludes the opportunities for executing
services only when needed, and may cause application de-
velopers to overprovision resources to meet workload re-
quirements. This overprovisioning leads to low resource
utilization for infrastructure operators and higher monetary
cost for application developers. In addition, although the
microservice architecture simplifies how each microservice
component is developed and operated, it requires developers
to carefully monitor and manage resources (e.g., containers,
virtual machines) to scale in/out each microservice properly,
making it challenging to serve often varying workloads.

2.2 Serverless Platforms

The serverless computing paradigm aims to remove resource
management from developers, scale fast to varying work-
loads, and provide cost efficiency via pay-as-you-go pricing
model. The most popular realization of serverless comput-
ing is Function-as-a-Service (FaaS), where the unit of com-
putation is a function. There are a number of commercial
FaaS Platforms (e.g., AWS Lambda [29], Azure Functions [7])
and open-source, community-maintained platforms (e.g.,
Apache OpenWhisk [4], OpenFaaS [23], KNIX MicroFunc-
tions [2, 17]). In this paper, we use Apache OpenWhisk which
is widely used in the community. However, it is worth noting
that the observations and guidelines drawn in this paper can
be generally applied to other serverless platforms.

In a Faa$ platform, developers write their application logic
as a set of stateless functions. Each request is dispatched to
one function or a sequence of functions, which causes a
function instance to be scheduled to run inside an action
container, process the request and generate an output. Upon
the completion of a function execution, its state is destroyed
or externalized via a storage or messaging system; therefore,
freeing the resources for other uses. Together, these mech-
anisms keep serverless function executions usually short-
lived, and enable flexible and fine-grained scheduling and
scaling of infrastructure resources to meet varying work-
loads when needed. This flexibility in turn leads to the re-
source efficiency for infrastructure operators and the cost
efficiency for developers.

The stateless nature of the serverless functions, however,
creates a fundamental tension between the complex stateful
applications and the FaaS platforms. To take full advantage
of serverless computing, developers of existing complex ap-
plications have to re-architect their applications, which is
costly and somewhat ad-hoc, making it preferable to reuse
existing codebase to the maximum extent. Therefore, it is of
great interest to have a principled approach to migrating ex-
isting applications onto serverless platforms, with minimal
code changes and comparable performance (e.g., latency).



Table 1. The statistics of the four complex, stateful microservice applications.

. . #App. Logic #Off-the-shelf Application -
Application #Services Services (LoC) | Services Language Framework Communication
Overleaf 15 12 (61,616) 3 Node.js Express RESTful API, Redis Pub/Sub
Social Network 26 11 (7,123) 15 C++, Lua Thrift RPC RPC
LAB 18 10 (8,295) 8 Java, Kotlin Micronaut RESTful API, Kafka
Node.js, Java, RESTful AP,
Robot Shop 12 7 (1,679) 5 Python, Go, PHP Express, Flask, Spark RabbitMQ

3 Migration of Microservice Applications

To gain first-hand experiences, we have migrated four publicly-
available, complex microservice applications onto Apache
OpenWhisk. These applications are designed using a few ap-
plication frameworks with diverse choices in programming
languages and communication interfaces (see Table 1). They
consist of 12-26 microservice components which include
application logic components, as well as off-the-shelf soft-
ware components that are usually used for communications
(e.g., Kafka and RabbitMQ), keeping application state (e.g.,
Redis and MongoDB) or monitoring application status (e.g.,
Zipkin[24] and Jaeger[14]).

To migrate, we first determine whether a component is an
off-the-shelf component. Normally, we do not migrate such
components in order to minimize changes to the original ap-
plication architecture; alternatively, these components could
be replaced with their counterparts offered by serverless
platforms (e.g., AWS S3 for keeping application state). Fur-
thermore, since serverless functions are short-lived and not
directly network-addressable, we keep microservice compo-
nents unchanged if they interact with other entities in a bidi-
rectional streaming fashion, e.g., via websocket or streaming
RPC. Finally, we determine whether and how to adapt the
remaining application logic microservice components to be
serverless functions, with special care to these microservices
that deal with synchronous communication, state manage-
ment, and a few others (guidelines in Section 4).

3.1 Overleaf

Overleaf, formerly known as ShareLaTeX, is a real-time col-
laborative LaTeX editor [25]. Besides off-the-shelf compo-
nents (e.g., NginX, MongoDB and Redis), it has 12 application
logic microservices, all of which are written in JavaScript and
run using Node.js. These microservices communicate with
each other using RESTful APIs and Redis Pub/Sub channels,
and MongoDB is used for data storage. Overleaf leverages the
Express framework, which allows internal service modules
in a microservice to be exposed to other microservices.

Migration. As shown in Table 2, we introduce 1.2% lines of
code changes to Overleaf. First, 8 out of 12 application logic
components are stateless and communicate via RESTful APIs,
making their migration straightforward: we augmented each
component with a wrapper function that acts as the entry

Table 2. The statistics of the four application migrations.

L. #Services | #Services Remain-
Application Migrated | ing but Changed ALoC (%)
Overleaf 10 1 746 (1.2%)
Social Network 11 1 910 (12.8%)
LAB 10 0 850 (10.2%)
Robot Shop 7 0 590 (35.1%)

point required by OpenWhisk. This wrapper is responsible
for forwarding parameters to the original Express handler
upon invocation (see Section 4.2 for details).

In addition, there are 4 stateful microservice components:
1) The web microservice acts as a dispatcher for sending
requests to downstream microservices, as a request authenti-
cator that reads locally stored credentials to verify requests,
and also as a proxy server for file uploading/downloading. 2)
The clsi microservice compiles LaTeX files and stores the
output locally. This local storage acts as a file server for fu-
ture retrieval. 3) The filestore microservice is responsible
for serving Overleaf files. 4) The real-time microservice
exposes addressable network interfaces to clients, accepts
incoming connections and interacts with the clients via the
connections.

Among these 4 components, we applied changes to the web
and clsi components. In a nutshell, for web, we separated its
authentication module, persisted the authentication-related
credentials in Redis, and kept the file proxy server module
as in the original microservice (see Section 4.3). For clsi,
we made changes in 38 lines of code to store generated files
in filestore. As a result, we could migrate web and clsi
into serverless, while keeping filestore and real-time
still as microservices in order to minimize code changes and
comply with the original architecture.

3.2 Social Network

Social Network [12] is an online social networking appli-
cation based on DeathStarBench which has been used as a
benchmark suite for cloud microservices [11]. This applica-
tion uses Apache Thrift [30] to enable RPC communications
among its microservices that are written in C++ and Lua.

Migration. All application logic microservices in Social Net-
work are stateless, and we could migrate all of them. The



key challenge we faced was that Apache OpenWhisk func-
tions are invoked via HTTP requests with JSON-encoded
data as input, whereas the Social Network’s RPC code uses
low-level socket APIs. As a result, we had to convert its orig-
inal RPC communications to HTTP communications, and
implement the extra JSON serialization/deserialization func-
tionality. To assist in this conversion, we have developed a
semi-automated script in roughly 700 lines of Python code.
With regard to the request routing logic, we bypassed the
original RPC listener (see Section 4.2).

3.3 LAB Insurance Sales Portal

LAB Insurance Sales Portal (abbreviated as LAB) [18] is an e-
commerce application that uses the Micronaut microservice
framework [21]. Its microservices are written in Java and
Kotlin, with dependencies on the Micronaut libraries. The
inter-service communication happens via either RESTful
APIs or the Apache Kafka message broker [3].

Migration. There are 6 stateless application logic microser-
vice components. These components originally communicate
with RESTful APIs and Kafka, so we made necessary changes
to adapt their communications to OpenWhisk’s required pat-
terns and removed Kafka entirely (see Section 4.1). For the
remaining 4 stateful components, we noticed that each of
them runs a local H2 in-memory database [9] for state man-
agement. We unified these H2 databases into a new single
stateful component, and this change enabled us to migrate
these 4 components also into serverless.

3.4 Robot Shop

Robot Shop [32] is another e-commerce application. It uses
several popular programming languages including Node.js,
Java, PHP, Python and Golang, along with web frameworks
such as Express, Flask and Spark. Its microservices commu-
nicate with each other via RESTful APIs and RabbitMQ.
Migration. All its application logic microservices are state-
less, and their migration is similar to that of the Overleaf
application described before. We kept the original listeners
to forward requests with additional request encoding/decod-
ing steps. Most of our efforts have been focused on making
this conversion in different languages and frameworks used
in this application. Furthermore, we removed the RabbitMQ
component which was originally used to asynchronously
trigger some subscriber service (i.e., dispatch), because its
functionality has already been supported by OpenWhisk. Al-
together, though the codebase of Robot Shop is the smallest,
the ratio of code changes (35.1%) is the highest among all
four application migrations.

4 Observations and Migration Guidelines

Here, we present our observations in the aforementioned mi-
gration efforts and summarize a set of general guidelines for
migrating complex applications onto serverless platforms.

4.1 Synchronous vs. Asynchronous Communication

Microservice components communicate with each other via
well-defined interfaces. Depending on the application needs,
this communication can take place synchronously or asyn-
chronously. In synchronous communication, the sender of
a message blocks until it receives a response from the re-
ceiver of the message. Examples include RESTful APIs and
synchronous RPCs. On the other hand, in asynchronous com-
munication, the sender of a message does not wait for the
response from the receiver. Examples include communica-
tion via message brokers and asynchronous RPCs.

We could apply the synchronous communication in the
context of serverless computing via blocking serverless func-
tion calls, which however might cause inefficiencies and
double billing [8]. For example, in Overleaf, a synchronous
spelling request goes through the web microservice, mean-
ing the migrated serverless web would have to wait until the
serverless spelling finishes processing the request. This
problem gets amplified when there are multiple functions in-
teracting with each other. As a result, microservices commu-
nicating over synchronous channels require more changes
to benefit from serverless computing, due to the conversion
of communication patterns. We leave the exploration of op-
timizations for future work.

Communication among serverless functions usually hap-

pens in asynchronous channels. Migrating microservice com-
ponents that exchange messages via asynchronous channels
(such as message brokers) can be more straightforward, and
the modification can be performed in various ways.
Invoke with publishing. Since a serverless function is trig-
gered only when there is a request, one cannot simply take a
microservice component that is the message receiver (work-
ing in a subscriber mode) and use it in a serverless function
that executes when there is a request (see Figure 2a). Thus,
the sender (i.e., publisher) has to invoke the serverless func-
tion asynchronously, so that the message can be received
and processed (see Figure 2b).
Invoke without publishing. The sender can also invoke
the receiver function with the request message (see Figure 2c).
This approach has the advantage of eliminating the overhead
caused by publishing and receiving the message from the
message broker. Furthermore, it makes the message broker
redundant, so that it can be removed to simplify the appli-
cation architecture. On the other hand, features provided
by the message broker, such as message ordering or multi-
subscriber support for parallelism, would be lost and have
to be otherwise supplied. For example, the sender may need
to invoke multiple subscribing functions for parallelism.

4.2 Listening and Routing

Regardless of the choice of synchronicity in the communica-
tion, the interacting microservice components have to listen
for new requests and route them to their associated internal



1 # publisher

2 publisher.publish(newMessage)

3 # subscriber

4 subscriber.register(fetchAndProcessNewMessage)
5 def fetchAndProcessNewMessage():

6

(a) Original publication and subscription.

+*

publisher
publisher.publish(newMessage)
publisher.invokeAsync(subscriber, 'notifyNewMessage')
subscriber
def serverless_handler(msg):

if msg == 'notifyNewMessage':

subscriber.register(fetchAndProcessNewMessage)

def fetchAndProcessNewMessage():

I B T R TR Ry
+*

(b) Serverless: Invoke with publishing.

E=3

publisher

publisher.invokeAsync(subscriber, newMessage)

subscriber

def serverless_handler(newMessage):
processNewMessage (newMessage)

L B I
E=3

(c) Serverless: Invoke without publishing.

Figure 2. Asynchronous communication migration.

handlers. With RESTful APIs and RPCs, the microservice
usually exposes a network port and accepts requests over
the port (see Figure 1). With message brokers (e.g., Kafka,
RabbitMQ, Redis Pub/Sub), the microservice subscribes to a
topic or channel, and waits for incoming requests.

In the serverless computing context, such scaffolding code
for receiving messages becomes unnecessary, because the
exchanges of message between functions are handled by
the serverless platform. These exchanges usually invoke the
serverless functions with the input parameters as a JSON-
encoded object inside the HT TP request. In a migration effort
with the goal of minimal code changes, this input needs to be
converted properly to dispatch the request to its appropriate
handler. There are two approaches one can take.

Keep the listener. This approach will keep the original
listener of a microservice component inside the serverless
function. In order to process the request, some glue code is re-
quired so that the incoming HTTP request on the serverless
platform can be converted to the request format accepted
by the microservice component. For example, if the orig-
inal microservice component has an RPC server, the glue
code will have to transform the HT TP request into RPC in-
side the serverless function. This approach can reduce the
migration effort drastically. For example, in Overleaf, we
only need to write 66 lines of JavaScript glue code to wrap
existing listeners, which are then applied to 10 of its mi-
croservice components. One potential disadvantage is the

additional latency introduced by the glue code. Furthermore,
care must be taken when the original components expose
network ports: if original microservices use the same port
numbers, migrated versions (i.e., functions) in this approach
may execute on the same host and create conflicts.

Bypass the listener. This approach will remove or bypass
the original listener. It is more efficient, but it requires ex-
tra efforts to find and call the proper inner handler for each
type of requests. In RPC-based microservices, the decoupling
of the RPC stub and the handler code makes the migration
fairly straightforward. In comparison, in microservices using
REST APIs, the code of handlers and listeners is more tightly
coupled, for instance, due to the underlying frameworks (e.g.,
Express for JavaScript, and Flask for Python). This migration
requires more efforts and changes, making it more tedious
and error-prone. For example, the Overleaf’s spelling mi-
croservice written using the Express framework requires
the modification of about 150 lines of code, even though the
microservice itself consists of only 800 lines of code. For a
larger microservice like web, which consists of about 40K
lines of code, this modification will require more efforts [20].

4.3 State Management

Serverless functions are typically stateless and short-lived,
with an intent to make them easy to manage and scale. Multi-
ple requests to the same serverless function may be directed
to different function instances for execution, and therefore,
the state produced by one execution may be inaccessible to
the next execution. This approach, however, complicates the
state management that is required by many microservice
applications.

To share the state between multiple instances of the same
function or across multiple functions, one common approach
is to externalize the state to some intermediary (e.g., a stor-
age system such as MongoDB, Redis, or AWS S3) for state
sharing. Extra care needs to be taken to deal with state dur-
ing migration. As mentioned in Section 3, if the application
uses off-the-shelf storage components (e.g., MongoDB), we
can either simply keep these components to minimize code
changes, or modify the application to use storage services
offered by the serverless platform (e.g., AWS S3).

In contrast, if the state is stored locally inside custom mi-
croservice components, we have to manually identify the
application state before externalizing it. For example, there
are two types of local state in Overleaf. One is the csrf to-
kens used for authentication in the web microservice. The
other is the compiled files within the c1si service, which are
stored in filestore after migration. These data are stored in
Redis after our migration. Another example of such locally-
kept state is the local database in LAB Insurance Sales Portal.
Several microservices of this application have their own H2
in-memory database running locally. When these microser-
vices are migrated, the corresponding H2 database engine



could be deployed as a standalone server if one wants to
minimize the code changes.

4.4 Miscellaneous

Below, we further report two more migration considerations.
Exception handling. In microservice applications, there
are many exceptions thrown at runtime to handle communi-
cation failures. To comply with the original application logic,
we should keep the identical exception handling behaviors in
the migrated version. For RESTful APIs, supported by Open-
Whisk natively, we can simply reuse the original exception
handling mechanism. However, this cannot be applied to
RPC-based communications, since the migration replaces
RPCs with HTTP requests. To address this issue, we have to
identify the distinct types of RPC exceptions, and explicitly
throw exceptions when the corresponding failures occur,
in such a way that these exceptions can be handled by the
original exception handling code.

Redundant components. Serverless platforms usually pro-
vide utilities for monitoring, load balancing, and auto-scaling.
When migrating microservice applications onto serverless
platforms, some existing components can be removed or re-
placed with the built-in options provided by serverless plat-
forms. For instance, Consul, the registry and discovery ser-
vice in LAB, can be removed as serverless platforms already
route messages to associated functions. Similarly, circuit
breakers for limiting request rates may also become re-
dundant, because applications can use the monitoring, load
balancing and scaling utilities from the serverless platforms.

5 Preliminary Evaluation

We report our preliminary evaluation on three applications:
Overleaf, Social Network and Robot Shop], and compare the
original microservice architecture with our migrated version.
We first break down the request handling of one task in each
application (i.e., ‘Compile’ in Overleaf, ‘StorePost’ in Social
Network, and ‘SubmitOrder’ in Robot Shop). Afterwards, we
increase the load on the ‘Compile’ task in Overleaf and the
‘SubmitOrder’ task in Robot Shop to evaluate the scalability
offered by OpenWhisk, and report throughput and latency
values. We use Locust [19] for load generation.

Our experiments were conducted in a virtual machine
(VM) with 40 2.2GHz vCPUs, 40GB RAM and 250GB SSD.
This VM hosts the OpenWhisk installation with one con-
troller, one invoker and an unlimited container pool size, as
well as the microservice components that are not migrated.
These components run in separate containers with no re-
source limits. All serverless functions are deployed with
256MB RAM in OpenWhisk. To make a fair comparison
with the always-deployed microservice components, we en-
sure that our OpenWhisk functions are running in warm

!We observed similar trends for the LAB Insurance Portal application and
omit its results due to space limit.

Table 3. Latency breakdown in milliseconds for Overleaf’s
‘Compile’ task, Social Network’s ‘StorePost’ task, and Robot
Shop’s ‘SubmitOrder’ task. Here, ‘SL’ stands for serverless
and ‘MS’ stands for microservice.

Task [ Version [ Invocation [ Init [ Compute [ Store [ E2E

Compile SL 28.1 - 283.3 19.0 | 330.4
MS 3.8 - 275.0 - 278.8

Store- SL 339 25.7 0.7 - 60.2
Post MS 0.2 - 0.6 - 0.8

Submit- SL 26.9 - 158.7 - 185.6
Order MS 6.4 - 141.9 - 148.3

containers. This setting is reasonable, and we reason our
decision as follows: First, under steady workloads, function
containers will be warm to better serve requests. Second,
decreasing cold-start and invocation latencies is an active
research topic [2, 15, 22] and is orthogonal to this work.

5.1 Latency Comparison and Breakdown

Table 3 presents the latency breakdown of the requests for
the three tasks in our applications. As one can see, the ‘com-
pute’ step is roughly equal for both serverless (SL) and mi-
croservice (MS) deployments. The reason is that, for com-
putation, there are no resource limits for both the Open-
Whisk functions and the original microservice containers.
In the serverless functions, there is a common ‘invocation’
overhead. This overhead is due to OpenWhisk’s handling of
HTTP requests to trigger a function execution, which has to
pass through multiple platform components before reaching
the function (i.e., NginX, controller, Kafka and invoker). On
the other hand, for the original microservice deployment, the
request happens directly via Thrift RPC in Social Network,
and RESTful API in Overleaf and Robot Shop.

There are two more steps that incur overhead for the
serverless deployment. The ‘Store’ step for the ‘Compile’
task in Overleaf is due to our migration-related changes:
instead of keeping the generated files inside the microservice
component, we send these files to the filestore component
(see Section 3). This externalization of state to a storage
service is common in stateless serverless functions and can
only be alleviated by providing fast access to such storage.

The ‘Init’ step in Social Network’s ‘StorePost’ task is more
involved. This step refers to the loading of serverless func-
tion executables and the setup of active database connections
to MongoDB and Memcached in the original microservice
component. First, there exists language mismatches between
OpenWhisk’s action runner and the function, i.e., Open-
Whisk’s action runner uses Python to listen for new requests,
but the ‘StorePost’ function is written in C/C++. Thus, the
Python runner loads the executable binary dynamically at
every request. Second, we had expected that these connec-
tion requests could be moved outside the function handler
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Figure 3. Scaling of the ‘Compile’ task in Overleaf. Here,
‘SL’ stands for serverless, ‘MS’ stands for microservice, and
‘_num’ indicates the number of clients (e.g., 40).

to eliminate the incurred latency, so that they are estab-
lished only once at the action container start and stay alive
for subsequent requests. Nevertheless, because the database
connections are set up inside the binary, this step cannot be
easily eliminated. There are two approaches: If the action
container’s runner was written in the same language, this
issue would not exist. More generally, these connections are
required for storing and retrieving state, thus could be re-
moved if the serverless functions have access to a common,
efficient backend storage service.

5.2 Auto-scaling Benefits

To show the auto-scaling benefits of serverless computing,
we conduct experiments with the Overleaf’s ‘Compile’ task
and Robot Shop’s ‘SubmitOrder’ task, in which we increase
the workload by adding 5 and 10 more clients per second,
respectively, until the system gets saturated. Note that, the
purpose of our preliminary evaluation is not to showcase
that our migration to serverless can perform better than mi-
croservices, but should rather be seen as a ‘sanity check’ on
our changes. Figure 3a shows that the serverless version of
the ‘Compile’ task supports up to 80 requests per second
with 60 clients, whereas the original microservice compo-
nent can only handle 40 clients and up to 19.3 requests per
second. Recall that the original microservice component is
running without resource limits; however, the clsi com-
ponent responsible for compilation is bottlenecked by the
single process it runs. On the other hand, though the Open-
Whisk actions are limited to 256MB RAM, they can still scale
out with concurrent requests.

Figure 3b shows the experienced latency with these work-
loads. With the increasing load, the original microservice
experiences an increasing delay and reaches up to about
2 seconds under the peak load. In comparison, the latency
produced by the serverless function is more stable and is
about 900ms under the peak load. As shows in Figure 4a
and 4b, we also observe similar performance trends for the
‘SubmitOrder’ task in Robot Shop, validating the auto-scaling
ability of serverless platforms.
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Figure 4. Scaling of the ‘SubmitOrder’ task in Robot Shop.
Here, ‘SL’ stands for serverless, ‘MS’ stands for microservice,
and ‘_num’ indicates the number of clients (e.g., 100).

6 Discussion and Future Directions

We think that serverless computing can benefit a wide range
of complex, stateful applications; however, there are still
some open challenges that need to be addressed. First, our
preliminary evaluation as well as other studies [2, 22] reveal
that the visible invocation delays may impede the adoption of
serverless computing, especially for latency-sensitive appli-
cations. The extra delay would be amplified when executing a
sequence of functions, required by complex application logic.
Therefore, the migration methodology should incorporate
the trade-off between latency and serverless benefits (e.g.,
auto-scaling) to avoid ‘over-migration’. Fortunately, there is
a plethora of work to eliminate such overheads from both
industry [1] and academia [2, 15]. Second, a tool that helps
developers migrate their legacy microservice applications to
serverless or that automates this migration will be tremen-
dously helpful for enabling serverless benefits for such ap-
plications. Such a tool would also accelerate the adoption of
serverless computing for a wider range of applications. Our
manual migration already makes a first step towards this
goal. However, in order to automate this process, more work
is needed to address the challenges introduced by different
communication patterns as well as tight coupling of state
with computations. Third, the state management plays a key
role in migrating stateful microservices onto serverless plat-
forms. To reduce migration complexity, state management
systems should have well-defined interfaces covering various
types of states (e.g., files, memory, key-value pairs). In addi-
tion, fast state access will likely improve the performance of
serverless functions after migration.
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