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ABSTRACT
Serverless computing has emerged as a new cloud computing par-
adigm, where an application consists of individual functions that
can be separately managed and executed. However, the function
development environment of all serverless computing frameworks
at present is CPU-based. In this paper, we propose to extend the
open-sourced KNIX high-performance serverless framework so
that it can execute functions on shared GPU cluster resources. We
have evaluated the performance impacts on the extended KNIX sys-
tem by measuring overheads and penalties incurred using different
deep learning frameworks.

CCS CONCEPTS
• Information systems → Computing platforms; Cloud based
storage; • Computing methodologies → Graphics processors; •
Computer systems organization→ Multiple instruction, single
data; Cloud computing.
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1 INTRODUCTION
Serverless computing is emerging as a key paradigm in cloud com-
puting. In serverless computing, the unit of computation is a func-
tion. When a service request is received, the serverless platform
allocates an ephemeral execution environment for the associated
function to handle the request. This model, also known as Function-
as-a-Service (FaaS), shifts the responsibilities of dynamically manag-
ing cloud resources to the provider, allowing the developers to focus
only on their application logic. It also creates an opportunity for
the cloud providers to improve the efficiency of their infrastructure
resources.
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Figure 1: Execution duration of Neural Style Transfer Server-
less Workflow on different KNIX deployments

The serverless computing paradigm has already created a signif-
icant interest in industry and academia. There have been a number
of commercial serverless offerings (e.g., Amazon Lambda [2], IBM
Cloud Functions [17], Microsoft Azure Functions [8], and Google
Cloud Functions [10]), as well as several new proposals (e.g., Open-
Lambda [1] and OpenFaaS [13]).

Currently, these publicly available offerings only provide CPU ac-
cess. However, with the rise of Deep Learning (DL) applications, the
necessity for large-scale computations utilising other types of accel-
erators such as GPU (Graphical Processing Units) and TPU (Tensor
Processing Unit) have emerged. Although the existing serverless
platforms work well for simple applications, they are currently not
well-suited for more complex services with high computational
requirements as they occur in DL applications. Considering the
advantages of serverless computing, it is natural to extend the
framework for such applications.

As a DL application example, consider an image processing
pipeline for Neural Style Transfer operation [14], which does infer-
ence using models of style transfer topology and needs to execute
a number of consecutive functions:

• pre-processing: load and verify model and image data
• processing: create loss functions, train the model
• post-processing: transform data and output the results

We ran this sample workflow on different deployments of the
KNIX platform, and found that the total time spent for the total
execution of this workflow dramatically depends on the availability
of a suitable accelerator, in particular for the function performing
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training steps (see Figure 1). resulting in an increase of total ex-
ecution time of several order of magnitude when omitting such
accelerators. As a result of these differences, the use and adoption
of serverless computing by a broader range of applications omitting
available accelerators is severely limited.

Within the infrastructure layer, model training is the compute-
intensive work in a typical machine learning (ML) pipeline, but
predictions, or inference, accounts for up to 90% of total operational
costs [6]. As another example, autonomous vehicle (AV) develop-
ment may require thousands of GPUs to train machine learning
models, but require millions of CPUs or GPUs to validate their soft-
ware/models with log data or synthetic simulations [7]. Inference
workloads have two main challenges:

• stand-alone GPU instances are designed for model training
and are typically oversized for inference. Even at peak load,
a GPU’s compute capacity may not be fully utilised.

• different models need unique amounts of GPU, CPU, and
memory resources. Selecting a GPU instance type that is big
enough to satisfy the requirements of the most demanding
resource often results in under-utilisation of other resources
such as memory or CPU.

In this paper we propose an open-sourced FaaS framework al-
lowing users to execute their applications in form of workflows in
the cloud, using heterogeneous and shared CPU and GPU cluster
resources. Users can request execution of parts of their applications
to be executed on GPUs, and additionally can have fine-grained
control the amount of GPU core and memory to be used for each
function as part of the workflow. The development of sophisticated
applications is simpler and more intuitive employing workflows
containing multiple functions because a developer can define and
manage the workflow of an application independently from its busi-
ness logic, so that making changes to one does not affect the other.
With the proposed framework, such workflows can simultaneously
leverage a high-performance FaaS scheme for highly-scalable func-
tion executions, and profit from GPU-based computing power for
the execution of special compute-intensive functions. In summary
our contributions are as follows:

• Amulti-tenant FaaS framework that supports accelerators in
ML workflows, in particular in inference workflows where
GPUs often remain under-utilised.

• Automatic assignment of specialised accelerator resources to
workflow functions, based on their individual requirements.

• Grouping of different FaaS into a single sandbox. This is
advantageous in particular for DL inference due to fast and
efficient data sharing among different DL functions. Our ap-
proach preserves workflow modularity as each GPU requir-
ing function can still be maintained separately if required.

• We have open-sourced our framework.

2 BACKGROUND AND MOTIVATION
2.1 Serverless Computing
Serverless has become a buzzword within the systems commu-
nity when discussing running large workloads at scale. Among
the serverless providers, AWS Lambda is the most widely used
framework for serverless computing. Since Amazon launched and

serviced AWS Lambda in 2014, Microsoft has launched the Azure
Functions service, and Google has followed releasing Google Cloud
Functions (GCF, alpha) both in 2016, respectively. In terms of open
source Serverless Framework, there are Apache OpenWhisk, Iron-
Functions, Fn from Oracle, OpenFaaS, Kubeless, Knative, Project
Riff, etc. Serverless providers generally hide much of the complex
set-up of dedicated instances behind a veil, allowing the user to
directly send requests without having to worry much about setting
up an instance for running these requests. In addition, having users
share a single serverless provider allows a greater usage of the
resource hidden behind the provider, since all aspects of the hard-
ware can be used on user demand. Another advantage of serverless
benefits both the client and the provider: by having requests done
in more fine-grained chunks, the provider can more exactly match
the demand given by its users.

However, AWS Lambda as well as other Functions as a Service
(FaaS) public services also imposes strict computing requirements.
AWS Lambda functions run on a constrained environment, where
the function execution time and maximum RAM cannot exceed
15 min and 10,240 MB, respectively, the ephemeral disk storage
is limited to 512 MB, and the CPU assignment to a function is
controlled by the amount of RAM assigned to it. Also, it is not
possible to assign any kind of accelerator (GPU, TPU,...) to a FaaS
by with any of the providers mentioned in this section.

2.2 Accelerated Serverless Computing
Kubernetes [20] services of major container cluster service vendors
around the world provide the capability to schedule NVidia GPU
containers, but it is generally implemented by allocating an entire
GPU card to a container. This allows for better isolation and ensures
that applications using GPU are not affected by other applications.
This is suitable for DL model training scenarios, but it would be
a waste for applications like model development and prediction
scenarios. Kubernetes already includes some experimental support
for managing AMD and NVidia GPUs across several nodes. How-
ever, plain Kubernetes only allows to schedule entire GPUs to pods.
Once a GPU has been allocated it remains unschedulable for other
pods, until the prior pod execution terminates.

Alibaba Cloud Container Service for Kubernetes (ACK) Server-
less Service [11] has added support for GPU-enabled container
instances. These instances, based on existing Alibaba Cloud Elastic
Container Instances (ECI), allow for running AI-computing tasks
in a serverless mode more quickly. But as with Kubernetes, this
service is limited to scheduling of entire GPUs to pods.

Similarly, Nuclio [21] is an open source and managed serverless
platform used to minimize overhead and automate the deployment
of data-science based applications. However, their implementation
is based on the common NVidia device plugin, only allowing to
assign full GPUs to serverless functions.

2.3 Motivation
The demand is to allow more inference tasks to share the same
GPU card, thus improving the GPU utilisation in the cluster.

This calls for a suitable partitioning scheme of GPU resources
being in place. Here, the dimension of GPU resource partitioning
refers to the partitioning of both GPU core and memory.



For fine-grained GPU device scheduling, there is currently no
good solution. This is because the extended resources such as GPU
in Kubernetes restricts quantities of extended resources to whole
numbers, cannot support the allocation of complex resources. For
example, it’s currently impossible for a user to ask for 0.5 GPU in a
Kubernetes cluster.

In contrast to comparable approaches the user can configure any
function to use only a fraction of an entire GPU core and memory
employing the KNIX serverless platform. This increases flexibility
for the user and scalability of the serverless platform because it
enhances the GPU utility through sharing of the remaining GPU
fraction with other FaaS (see Fig. 2).

With our design users does not need to possess knowledge in
detailed GPU sandbox set-up for their function and cluster manage-
ment because this is abstracted away from them. All these benefits
come in addition to the finer-grained resource allocation for KNIX
microfunctions and workflows as discussed in the previous section.

3 RELATEDWORK
Traditional NVidia docker [22] environment simply assigns a GPU
to a container, which causes program failure if multiple containers
share the GPU and use GPU memory dynamically.

3.1 GPU attachement to CPU service
Prior work has been done on attaching a GPU to the conventional
Lambda framework [18]. Our approach differs from this in that
KNIX completely decouples the GPU from the CPU, allowing the
user to define function requirements for GPU using device plugin
and a GPU virtualisation scheme. A GPU statically attached to
Lambda approach poses a few downsides. By doing this, a FaaS
provider is essentially doing the same thing as the traditional server-
ful approach, but on a smaller scale. By decoupling the GPU requests
from the CPU, the provider can rent out GPU usage as well in ad-
dition to the CPU. However, if the user wants to use both CPU
and GPU simultaneously, this is not possible with the GPU attach-
ments approach. Recently, cloud-hosted inference services (AWS
Elastic Inference [6], Google Cloud Inference API) have emerged
to attach the right amount of GPU-powered inference acceleration
to selected CPU services, raising serious privacy concerns because

Figure 2: Illustration of a) traditional methods of process-
ing GPU workloads on Kubernetes cluster versus b) KNIX
method of dealing with this issue.

this model calls for sending of private and privileged data over the
network to remote servers. Also, these services cannot be used to
extend the capabilities of serverless offers such as AWS Lambda or
GCF.

3.2 CUDAWithout Environment Setup
Prior work has been done on remote GPU acceleration of GPU-
enabled workloads [12], however without employing the serverless
approach. The authors describe a framework to enable remote GPU-
based code acceleration, thus permitting the reduction of accelera-
tors in the cluster and consequently the global energy consumption.
Using this approach, the user can make calls to CUDA through
a driver. However, on the back end of the driver, CUDA requests
are sent over the network. This has the inherent disadvantage of
lacking fault tolerance in case of network outages.

3.3 GPU Sharing Frameworks
While GPU virtualisation has been extensively studied for VM, lim-
ited work has been done for containers. One of the key challenges
is the lack of support for flexible and fine-grained GPU sharing be-
tween multiple concurrent containers. This limitation leads to low
resource utilisation when a GPU device cannot be fully utilised by
a single application, e.g. due to the burstiness of GPU workload and
the limited GPU memory bandwidth. In the following we describe
a number of solutions tackling these problems.

3.3.1 KubeShare. KubeShare is a framework to support GPU shar-
ing in Kubernetes. In order to address the GPU utilisation and per-
formance interference problems in shared resource environment,
KubeShare manages GPUs as first-class resources, and provides a
simple yet powerful resource specification to let users to request
specific vGPU binding for their containers using the GPU iden-
tifier, and to control the location of their GPU by specifying the
locality constraints. For this purpose, KubeShare introduces a new
Kubernetes API called SharePod. However, this new API introduces
compatibility problems in other parts such as the KNative service
generation on Kubernetes.

3.3.2 GPUShare Scheduler Extender. Aliyun [16] is a container
service open source project developed by Alibaba. This approach
solves the GPU resource fragmentation problem incurred by other
sharing approaches by developing a scheduler-extender in Kuber-
netes. However, the platform only limits the GPU memory usage
of a container, not the computation resource usage. Additionally,
GPUShare does not support resource isolation because all tasks
share time slices on the same set of GPUs and may therefore affect
each other.

3.3.3 GPU Manager Framework. The GPU manager framework
[15] is a recent work that further extends Aliyun to support GPU us-
age isolation on kernel execution based on the𝐿𝐷_𝐿𝐼𝐵𝑅𝐴𝑅𝑌_𝑃𝐴𝑇𝐻
API interception technique. 𝐿𝐷_𝐿𝐼𝐵𝑅𝐴𝑅𝑌_𝑃𝐴𝑇𝐻 is an environ-
ment variable for Linux systems that affects the runtime link of
programs, allowing some directories to be loaded before the stan-
dard set of directories. The framework enables Kubernetes to not
only run more than one Pod on the same GPU, but also gives QoS
guarantees to each Pod. It allows to configure and limit both GPU
and memory shares for each pod to be deployed on the cluster.



However, the authors did not test the overhead incurred in a server-
less, cloud-native environment like KNIX, or the sharing of GPU
resources between different sandboxes.

Therefore, we have used the GPU Manager framework as a start-
ing point to extend the KNIX capabilities using fractional shared
GPU resources for function and workflow deployments and to eval-
uate the incurred impairments with respect to platform overhead,
application performance and resource isolation.

4 KNIX SERVERLESS PLATFORM
We used the serverless framework SAND, which recently has been
renamed to KNIX, as a starting point for our test system imple-
mentation. KNIX MicroFunctions [19] is an open source serverless
computing platform for KNative as well as bare metal or virtual
machine-based environments. It combines container-based resource
isolation with a light-weight process-based execution model that
significantly improves resource efficiency and decreases the func-
tion startup overhead.

First the capability to execute Python KNIX functions in sand-
boxes using NVidia GPU resources for both ansible and helm de-
ployments of KNIX has been added. GPU nodes are detected and
configured automatically by the platform. The configuration details
for KNIX deployments integrating NVidia GPU nodes are described
in [19]. GPU Manager [15] has been used for managing the NVidia
GPU devices in our Kubernetes test cluster. We have chosen GPU
Manager because it allows flexible sharing of GPU memory and
computing resources among multiple isolated containers by parti-
tioning physical GPUs into multiple virtual GPUs (vGPUs). Each
Kubernetes pod can be assigned with vGPUs as requested.

5 KNIX PLATFORM DESIGN
The target of KNIX GPU framework extension is to share both GPU
memory and compute resources among containers with minimum
cost and maximum performance enhancement. There are some
challenges in achieving this goal:

• Transparency: It should not be required to modify any Ku-
bernetes code or container images for GPU sharing. An ap-
plication executed with shared vGPUs should behave as if it
was executed on physical GPUs.

• Low overhead: The application performance with vGPUs
should be as close as possible to the performance with phys-
ical GPUs.

• Isolation: KNIX should manage vGPU resource sharing and
allocation/de-allocation for microfunctions and workflows
and create the corresponding sandboxes so that they are
completely isolated from each other.

6 KNIX PLATFORM IMPLEMENTATION
In the following we list the main architectural component of the
KNIX serverless framework architecture and the modifications
required to allow for GPU sharing, for a more detailed description
of the KNIX architecture we refer to [5] and our github site on [19].

6.1 Management Service
The KNIX Management Service (MS) consists of functions that
enables users to sign up, login and manage microfunctions as well

as workflows. For this purpose the MS accesses its own storage
to manage application data. The MS is also responsible for the
calculation of KNative service configurations and parameters in
case of a deployment on Kubernetes. We needed to extend the MS
functions in several parts:

The functions responsible for adding and modifying microfunc-
tions and workflows needed to be extended so that they can handle
the requirements definitions for deployments on a sandbox running
on a GPU host. These configurations are provided by either the
KNIX GUI or by the KNIX SDK.

The MS is also responsible for configuration of KNative services
representing microfunction workflows in case of a helm deploy-
ment, allowing to define resources in form of limits and requests.
Requests and limits are the usual KNative mechanisms to control
resources such as CPU and memory. In our case, these mechanisms
are extended to additionally address vGPU resources for a micro-
function.

The MS analyses the entire workflow description containing
configuration information about all associated microfunctions, and
searches for added definitions about GPU limits or requests. If it
contains multiple microfunctions with GPU requirements, the MS
sums up their requirements to configure the KNative service repre-
senting the corresponding workflow and the respective sandbox.

Finally, logic has been added to the MS to allow for queries on the
allocatable vGPU capacities in the cluster prior to each workflow
deployment. This enables the MS to detect if the vGPUs required
by the workflow are indeed available in the cluster, so that pending
workflows due to GPU capacity over-subscriptions are avoided.

6.2 Sandbox Image Flavours
We needed to create new KNIX sandbox GPU images flavour be-
yond the flavours already available for handling of the different
languages supported by KNIX (Java, Python). Besides Python lan-
guage support, the new sandbox flavours needed to provide the
CUDA tools, math and deep neural network libraries and runtimes
required to address the GPU fromwithin this container. On the clus-
ter GPU nodes, an installation of the NVidia Container Toolkit and
Docker runtime was required to run this sandbox image flavour.

6.3 KNIX Workflow Description Extensions
The data structures describing a workflow has been extended to
allow for each workflow function to configure the amount of vir-
tualised GPU core and memory limits and requests required for
function execution.

7 TESTBED EVALUATION
We build a cluster which is composed of five hosts created using
vagrant and kubespray. One of the hosts acts as the Kubernetes
master, with the remaining hosts acting as worker nodes. One
of the worker node has a physical GPU. Detailed information of
the testbed hardware can be found in Table 1. We use Kubernetes
version 1.17.5 as the container orchestrator. For the GPU worker
node, we use the driver version 450.102.04, CUDA version 10.1,
cuDNN version 7.6.5. Docker version 19.03.14 is used as container
provider. nvidia-docker [22] is installed on the GPU worker node,
using the NVidia runc runtime for sandbox executions.



Table 1: Hardware configuration of the cluster

Kubernetes GPU Node
CPU 16x Intel(R) Xeon(R) W-2245 CPU
RAM 128 GB
GPU NVidia Quadro RTX 6000
Kubernetes Master/Worker (inside VM)
CPU 8
RAM 32 GB

Table 2: Measured GPU virtualisation overhead

𝑡𝑏𝑎𝑟𝑒𝑚𝑒𝑡𝑎𝑙 (s) 𝑡𝑣𝐺𝑃𝑈 (s) Overhead (%)
Tensorflow MNIST 298.2 300.0 0.67
Pytorch MNIST 189.1 222.3 14.9
MXNET MNIST 39.32 33.50 14.8

To examine the impact of GPU sharing on KNIX performance we
use a helm deployment, following the description for helm deploy-
ments with GPUs support in [19]. We use helm v3.2.4 and KNative
v0.16.0 for the KNIX platform deployment. Instead of deploying the
NVidia plugin to enable usage of the GPU as cluster resource, we
build and deploy the GPU Manager device plugin as a daemonset,
following the description in [15].

7.1 Overhead
In order to identify the overhead of sharing GPUs incurred by the
selected GPU Manager approach, we evaluate the performance
of GPU applications deployed in KNIX sandboxes with different
resource configurations. Today, most GPU applications are built
with DL frameworks as they provide an easy way to construct
deep networks. However, different DL frameworks have different
libraries and resource allocation strategies, leading to different
overhead when sharing GPUs among sandboxes. For our tests we
have selected the popular Tensorflow [4], Torch [23] and MXNet [9]
frameworks. We run the MNIST application on three different DL
frameworks in both the bare metal and inside the KNIX sandbox,
and measure its execution time. MNIST application is a program
that detects handwritten digits with database MNIST [20] using
Convolutional Neural Network. We choose this application for
fairness as all evaluated frameworks provide it in their official
examples.

The measurement results are shown in Table 2. 𝑡𝑏𝑎𝑟𝑒𝑚𝑒𝑡𝑎𝑙 in the
table refers to the execution time of the test applications running on
the host with a full GPU assigned 100% to it, while the 𝑡𝑣𝐺𝑃𝑈 refers
to the execution time of the application running in a sandbox with
shared GPUs. Overhead refers to the difference between 𝑡𝑏𝑎𝑟𝑒𝑚𝑒𝑡𝑎𝑙

and the 𝑡𝑣𝐺𝑃𝑈 , which is calculated using equation 1).

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =
𝑡𝑣𝐺𝑃𝑈 − 𝑡𝑏𝑎𝑟𝑒𝑚𝑒𝑡𝑎𝑙

𝑡𝑏𝑎𝑟𝑒𝑚𝑒𝑡𝑎𝑙

∗ 100% (1)

All tests are repeated 10 times, and the average value is used. As
shown in Table 2 the measured overhead of GPUManager in case of
the Tensorflow test application is still quite low and therefore can

support performance to be achieved as native environment for the
KNIX platform. Only in the case of Torch and MXNet frameworks,
quite large overheads of almost 15% are measured. This overhead
is related to large fluctuations observed in the GPU utility func-
tion during training phase of the MNIST application for both of
these frameworks, while the GPU utility was flat during the mea-
surements with TensorFlow. This apparently allowed for a more
efficient allocation of vGPU resources for this framework by the
GPU Manager.

7.2 Application Performance

Table 3: Configurations of vGPUs for application perfor-
mance experiments

Number of vGPUs 1 2 4 6 8
Comp. resource per vGPU (%) 100 50 25 15 12.5
Memory per vGPU (GB) 2 2 2 2 2

This experiment evaluates the impact of the partitioning of GPU
resources on application performance. We partition a physical GPU
into 1,2,4,6, and 8 vGPUs, and assign them to KNIX sandboxes
each executing the same DL test application (MNIST [3], Fashion-
MNIST [3], Cifar10 [26], Matmul [25]), and measure the application
execution time. Tensorflow framework is used to run these DL
applications. The vGPUs configurations are detailed in Table 3,
corresponding application execution times are shown in Fig. 3.
The x-axis is the number of vGPUs and the y-axis represents the
execution time of the application. Although the physical GPU has
around 24GB memory, the actual memory available is less than
that. Nevertheless it was possible to execute eight test functions in
parallel on a shared GPU. As shown in Figure 3, the execution time
is linear to the computing resources of the vGPU for large number
of concurrently executing pods.

The execution time for small number of pods is non-linear, in
particular for applications handling large model sizes. This is as-
signed to dynamic and elastic resource allocation effects through

Figure 3: The performance of DL test applications under
different partitioning of computing resources



the GPU Manager, which allows tasks to exceed the configured
vGPU settings and dynamically re-calculates the upper limit of
vGPU resources during sandbox execution, therefore increasing
the measured GPU utility (see Section 7.4).

7.3 Resource Isolation
Resource isolation means that the allocation of resources to one
sandbox should not have any unintended impacts on other sand-
boxes. To demonstrate if GPU Manager based approach can achieve
GPU resource isolation among KNIX sandboxes, we launch 2, 4, and
8 sandboxes on one physical GPU and measure the memory and
GPU utilisation of these sandboxes. Each KNIX sandbox is assigned
to one vGPU.

Table 4: Configurations of vGPUs for isolation experiments

Number of vGPUs 2 4 8
Computing Resource per vGPU 50% 25% 12.5%
GPU memory per vGPU (GB) 7.68 3.84 1.54

The KNIX GPU workload is performing random matrix mul-
tiplications using the Tensorflow framework. Table 4 shows the
configurations of vGPUs for each measurement performed, and Fig.
4 and 5 illustrate the measurement results. In figure 5, the x-axis
represents the elapsed time. The Tensorflow framework used in our
experiments adopts a one-time resource allocation strategy on start-
up, meaning that the entire available GPU memory is claimed when
the Tensorflow session starts. This static vGPU memory scheduling
is clearly visible in Fig. 5.

In Fig. 4, the y-axis refers to the measured GPU utilisation for
different number of sandboxes executing in parallel. As expressed by
the large standard deviation in this figure, the GPU utilisation shows
fluctuations over time, mainly because the GPU is a non-preemptive
device. Fig 4a illustrates that two sandboxes are running on one
physical GPU. The average GPU utilisation of one sandbox is 49.99%
and the other is 49,42%. ThemaximumGPUutilisation of each single
sandbox configured to be 50%, but as the vGPU Library component
monitors the resource utilisation of each process running on the
GPU at a given time interval, and the process can temporarily use
more resources than it has requested between monitoring intervals
and therefore deviate from its configured target utilisation. In Fig.
4b four sandboxes execute concurrently sharing one physical GPU,
and their respective GPU utilisations are 25,22%, 24,63%, 24,51%
and 24,54%.

When a GPU is shared by eight sandboxes (Fig. 4c, the average
GPU utilisation of sandboxes is around 12.4% and the standard
deviation of themeanGPU utilisation value among sandboxes is less
than 0.13% in our measurements. The experimental results reveal
that the chosen approach effectively isolates the GPU resources
of each sandbox when sharing GPUs among sandboxes. However,
the monitoring strategy chosen for GPU virtualisation results in
large fluctuations of 20-30% in the GPU utility function. However,
the fluctuation are only pronounced in the GPU utility function,
while the memory utility yields the expected value over the entire
sandbox lifetime (see Figure 5).

(a) 2 vGPUs

(b) 4 vGPUs

(c) 8 vGPUs

Figure 4: GPU utilisation with different number of vGPUs

7.4 Dynamic Sandbox Resource Allocation
The GPU Manager approach offers the special feature of elastic
GPU resource allocation. To investigate this property for KNIX
sandboxes we launched two workflow sandboxes on one physical
GPU, executing concurrently. One sandbox has been configured for
vGPU usage of 0.1 GPUs and 4GB memory and the other requires
0.9 GPUs and 4 GB memory. The matrix multiplication workflow is
executed with Tensorflow in two sandboxes. At first, one sandbox
with 0.1 GPUs executes the Tensorflow application. After t=70s,
another sandbox with 0.9 GPUs starts execution of the Tensorflow
application, and terminates execution at t=890s. The sandbox with
0.1 continues execution until it terminates as well at t=1300s

The experimental results are shown in Fig. 6. Compared to the
hard resource limit case with static resource allocation, the execu-
tion time of the workflow with 0.1 GPUs is reduced by 80%, and
the execution time with 0.9 GPUs is slightly increased by 15%. The
average GPU utilisation of the physical GPU is increased by 73.5%



(a) 2 vGPUs

(b) 4 vGPUs

(c) 8 vGPUs

Figure 5:Memory utilisationwith different number of vGPUs

during this experiment. The experimental results illustrate that
elastic resource allocation can significantly improve the application
performance and the GPU utilisation, in particular when using low
values for resource allocations.

7.5 Fast Data Sharing
Machine learning uses statistical algorithms that learn from existing
data, a process called training, in order to make decisions about
new data, a process called inference. During training, patterns
and relationships in the data are identified to build a model. This
model allows a system to make intelligent decisions about data
it has not encountered before. Optimising models compresses the
model size so it runs quickly. Training and optimising machine
learning models require massive computing resources, so it is a
natural fit for the cloud. But, inference takes a lot less computing
power and is often done in real-time when new data is available.
Getting inference results with very low latency is important to
ensure an IoT applications can respond quickly to local events.
The inference functions themselves can run on shared resources

Figure 6: Dynamic GPU resource allocation dynamics

equipped with accelerators such as shared GPUs. Such a distributed
scheme however assumes that a fast and efficient way to share data
between multiple functions performing inference concurrently is
in place. However, this is generally not the case. An obvious choice
to share trained model data between a multitude of functions is to
externalise the model state using a storage service such as Amazon
S3, but the incurred latencies and for up- and downloading model
data would be prohibitive for many applications.

As an alternative, Persistent Volumes (PVs) and Persistent Vol-
ume Claims (PVCs) can be configured to allow sharing data among
several pods running inference functions, with the following char-
acteristics:

• If a Pod is destroyed, data is persisted.
• a PV can be used to share data between sandboxes, whether
in the same pods or across pods.

• a PV does not allow to share data between pods running on
different nodes.

• PVs can be accessed by many Pods at the same time.
Exchanged model data can be large: as an example, even the

small, pre-trained VGG19 model used for neural style transfer mea-
surements in section 1 already exceeds a size of 550MB [24]. KNIX
offers an interesting alternative for sharing data among functions.
Instead of running each GPU-using inference function in its own
sandbox, microfunctions belonging to the same workflow could
be configured to share GPU sandbox resources and additionally
exchange model data via the local file system in a fast and effective
way. We have prepared KNIX sandboxes and have evaluated Keras
model data loading latencies using two different scenarios:

(1) data exchange via the GPU-using Sandbox filesystem, or
(2) via PV/PVC for sandboxes on the same GPU node
We performed measurements of model and weights loading,

both via the intrinsic Tensorflow SavedModel and via the older
HDFS loading scheme. Each experiment has been repeated 10x to
build the measurement mean values. The results in Fig. 7 show
the time required to share Keras VGG19 model and weights data
via reading/writing to the local file system is slightly shorter than
the time required to load the same VGG19 model data into GPU
memory via the PV/PVC in all measurements, showing an small



Figure 7: Comparison of read/write speeds of GPU-using
KNIX sandboxes

advantage of 14-26%, depending on the data loading scheme. We
therefore claim that KNIX offers additional benefit through the
grouping of functions inside the same KNIX sandbox, because of the
model sharing speed-up through the direct data exchange via the
sandbox file system. However, in a distributed FaaS environment,
if a model first needs to be unloaded from the GPU memory after
a microfunction finishes, and before the follow-up function can
execute, this unloading time would represent a challenge for the
function start-up times because this would add additional overhead.
More detailed evaluations of interactions between workflows with
sequential or concurrent microfunction executions and the KNIX
serverless platform are left for future work.

8 CONCLUSION
In this paper, we apply an approach for sharing GPU memory and
computing resources to our high-performance serverless platform
KNIX. Owing to its open design, only selected parts the frame-
work required modifications. Employing installations of nvidia-
docker, Kubernetes, KNative and the GPU-manager framework,
we succeeded to partition a physical GPU into multiple vGPUs,
and assigned these vGPUs to serverless KNIX microfunctions and
workflows. The selected approach enables allocation elasticity by
temporarily modifying container resources, therefore further im-
proving GPU resource utilisation.

Experimental studies have been conducted to evaluate the per-
formance impacts and overheads of GPU sharing using to different
DL frameworks. The results reveal that the measured overhead
introduced by the GPU sharing framework to DL frameworks is
<15%, so that in general the GPU resources can still be considered as
effectively managed. When measured over long execution times the
fairness variations for concurrently executing functions remains
low (<0.13%). However, our measurements still show potential for
further optimisation as dynamic GPU resource allocation and deal-
location results in strong fluctuations of assigned function’s GPU
resources. Finally, measurements on application performance and
fast data sharing between different shared GPU-using KNIX micro-
functions show potential for serverless application speed-up.
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