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A B S T R A C T

In today’s production machine learning (ML) systems, models are continuously trained, im-
proved, and deployed. ML design and training are becoming a continuous workflow of various
tasks that have dynamic resource demands. Serverless computing is an emerging cloud paradigm
that provides transparent resource management and scaling for users and has the potential to
revolutionize the routine of ML design and training. However, hosting modern ML workflows on
existing serverless platforms has non-trivial challenges due to their intrinsic design limitations
such as stateless nature, limited communication support across function instances, and limited
function execution duration. These limitations result in a lack of an overarching view and
adaptation mechanism for training dynamics, and an amplification of existing problems in ML
workflows.

To address the above challenges, we propose SMLT, an automated, scalable and adaptive
serverless framework on public cloud to enable efficient and user-centric ML design and training.
SMLT employs an automated and adaptive scheduling mechanism to dynamically optimize the
deployment and resource scaling for ML tasks during training. SMLT further enables user-centric
ML workflow execution by supporting user-specified training deadline and budget limit. In
addition, by providing an end-to-end design, SMLT solves the intrinsic problems in public cloud
serverless platforms such as the communication overhead, limited function execution duration,
need for repeated initialization, and also provides explicit fault tolerance for ML training. SMLT
is open-sourced and compatible with all major ML frameworks. Our experimental evaluation
with large, sophisticated modern ML models demonstrates that SMLT outperforms the state-of-
the-art VM-based systems and existing public cloud serverless ML training frameworks in both
training speed (up to 8×) and monetary cost (up to 3×).

1. Introduction

Motivation: The success of machine learning (ML) has prospered intelligent applications, such as translation [1], image
classification [2] and autonomous driving [3]. Designing and training ML models have become a daily routine for many ML
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engineers and practitioners. In production ML systems, models are continuously improved, trained, and deployed for providing
inference services. Therefore, today’s ML design and training are part of a continuous workflow with different training tasks that
have various dynamic resource demands, usually involving pre-processing, architecture engineering, hyperparameter tuning and
training via either manual efforts or automated approaches (e.g., neural architecture search [4]).

Limitation of state-of-art approaches: Thanks to its elastic resource offering, cloud is one preferred choice to perform ML
esign and training workloads. In particular, Machine-Learning-as-a-Service (MLaaS) offered by major cloud providers, such as
mazon SageMaker [5], Microsoft Azure [6], and Google Cloud [7], support optimized execution of ML tasks. Despite various
loud management tools, these systems usually require users to have extensive expertise. For instance, Amazon SageMaker provides
undreds of instance types with different computation and communication capabilities under a wide range of prices. Selecting
he appropriate instance types for scaling up and the suitable number of instances for scaling out from such a wide selection is a
on-trivial task. Recent efforts [8–10] on the optimization of ML task deployment target the automation of the deployment process.

However, they incur significant monetary costs just for tuning the environment before training (up to 60% of the total) [8]. These
approaches are not ideal for the state-of-the-art ML workloads that exhibit highly dynamic resource demands throughout the training
rocess, such as NAS [4], dynamic batching [11] and online training.
Key insights and contributions: Serverless computing is an cloud computing paradigm with one popular incarnation being

unction-as-a-Service, where the unit of computation is a function,2 and it has been adopted by a diverse range of applications [12–
14]. Serverless computing has great potential to match the requirements of ML workloads with dynamic resource demands, because
t aims to eliminate the resource and scaling management from users and offers a flexible ‘‘pay-as-you-go’’ pricing model. As such,
erverless computing is gaining popularity for inference from both academia [15–17] and industry, with the latest example being

the AWS SageMaker Serverless Inference [18–20].
On the other hand, ML model design and training on serverless platforms is still at an incipient stage. Initial attempts to enable

ML training on serverless platforms [21,22] are limited to specialized frameworks, support only simple approaches or small models
(e.g., linear regression, MNIST), and scale poorly to larger and more sophisticated ML training tasks. Due to these limitations, the
advantages in performance and cost when using serverless computing for large practical training tasks have been questioned [23].

Alleviating these concerns requires three challenges to be addressed. First, modern ML workflows usually have dynamic scaling
and resource demands [24,25]. For example, when the batch size [11] or model size changes during the training process, it may
inevitably change the scalability and resource demands of the training tasks. Not adjusting the underlying serverless resources
accordingly may result in lower performance and/or cost overheads. Hence, leveraging a generic serverless platform for ML training
tasks requires overarching monitoring of the training dynamics, and a resource adaptation mechanism. The stateless nature of public
cloud serverless platforms creates a challenge for such a mechanism.

Second, existing serverless platforms either do not provide user-centric deployment guarantees (such as meeting training deadlines
and training budgets) or incur a heavy runtime overhead in doing so [22]. To achieve these goals and to optimize the cost and
resource usage, the number of serverless functions and their memory configurations may need to be adjusted at a fine grained
level for different ML tasks. These adjustments require going beyond simply monitoring the progress of the training pipeline, and
ntroducing an optimizer that can, at runtime, automatically search for necessary configurations to meet a user-specified goal.
Finally, the end-to-end ML training platform based on serverless computing needs to address the challenges arising with the

ncreasing size and sophistication of the ML models as well as the different training frameworks that can be used. It is already
challenging to scale ML training using the traditional infrastructure with dedicated computation and network resources, and using a
serverless platform may amplify any existing issues. For example, the communication overhead for model synchronization already
presents challenges; using stateless serverless functions that communicate via external storage can exacerbate these bottlenecks. In
addition, the stateless functions may experience substantial repeated framework initialization overheads.

To address the above challenges, we propose SMLT — a public cloud serverless framework for scalable and adaptive ML design
and training. To enable an overarching view of the ML workflow and the swift scale-adaptation, we propose an automated and
adaptive scheduler for deploying and scaling training instances dynamically on the fly. Our scheduler can cater to varying resource
requirements during the execution of ML tasks, such as the dynamic batch size scheduler [11] and the architecture exploration in
NAS [4]. To achieve the user-centric deployment and execution guarantees, we offer a light-weight Bayesian optimizer to automate
nd optimize the ML task deployment and resource scaling to meet the user-specified performance and cost goals.
SMLT provides an end-to-end ML training service. It addresses the challenges caused by the stateless nature of serverless functions

on public cloud, including the initialization and communication overheads. Specifically, it employs two key system components: (1)
 hybrid storage consisting of a cloud object store for infrequently-accessed training data and an in-memory key–value store for

frequently-accessed model parameters, and (2) a hierarchical model synchronization scheme exploiting parallelism during model
synchronization. In addition, SMLT is designed to be agnostic of ML frameworks by abstracting the implementations of their common
nterfaces (e.g., input pipelines, gradient transfers).
Experimental methodology and artifact availability: To our knowledge, SMLT is the first fully-automated ML design and

raining framework that can support modern ML workflows in a scalable and cost-effective manner with the emerging serverless
rinciples. To demonstrate its flexibility, we evaluate SMLT using three different ML frameworks (i.e., Tensorflow [26], Pytorch [27]

and MXNet [28]), and show that our results are consistent across all of them. We perform our evaluation across a variety of ML
orkflows, including user-specified goals to minimize training time or budget, dynamic batching, online learning and NAS, and

2 Other incarnations of serverless computing include, e.g., the Container-as-a-Service with a full automation capability.
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show that SMLT can reduce cost by up to 3x compared to the state-of-the-art. We also demonstrate that our system scales well with
an increasing number of workers, leading to an overall reduction of up to 8x in the total training time when combined with other
optimizations. We open-source the codebase of SMLT for public access.3

Limitations of the proposed approach: One key challenge of SMLT is the unavailability of GPUs in typical public serverless
platforms. However, we believe with the wide adoption of serverless computing in academia and industry for a wide range of
applications, public cloud providers will soon offer GPUs for serverless computing as well. Initial prototypes of serverless platforms
with GPU support have already started emerging [29], and ML training using GPUs in a serverless environment has already been
employed in HPC [30] with promising results. We believe SMLT will demonstrate benefits on GPUs similar to our CPU evaluation.

2. Background and motivation

In this section, we give an overview of the latest ML workflows and how these workflows utilize cloud resources. We further
motivate our work by discussing the state-of-the-practice and state-of-the-art cloud ML systems and identifying their limitations.

2.1. Modern machine learning workflows

Distributed Machine Learning. Distributed data parallel training is typically employed to train modern ML models, which can
ontain up to billions of learning parameters [8], and require terabytes of training data [31]. Each worker node trains the model
n a partition of the training data, and synchronizes weight updates frequently with other nodes. The choice of the synchronization

approach can have a big impact on the training speed. In practice, Parameter Servers (PS) [32–34] and Ring-allreduce [28,31,35,36]
are typically used to coordinate the synchronization of weights across all worker nodes.

Machine Learning with Dynamic Resource Requirements. The life cycle of an ML model development includes pre-processing
he training data, designing an appropriate model, tuning hyperparameters, and training. The resource requirements across these
hases as well as within each phase can vary significantly and often require dynamic resource provisioning. For example, during
he model design, engineers usually employ the autonomic design technique known as Neural Architecture Search (NAS) [4,37] to

find an optimized model architecture. During this phase, different architectures are crafted, trained, and evaluated according to the
evaluation results of the previous trials, resulting in varying resource requirements for the new candidate model. Unless these new
requirements are met by scaling the underlying memory and communication resources, the optimal execution cannot be achieved
n terms of throughput and monetary cost.

As new architectures with different resource demands (e.g., a larger candidate model is more memory and communication
demanding) are generated based on previous evaluation results, the underlying resources also need to be scaled to achieve the
optimal execution in terms of both throughput and monetary cost. compute resource demand varies significantly. NAS automates
the network architecture engineering and parameter tuning via deploying models of various architectures and hyper-parameters in
parallel to learn a network that can achieve a best performance on a certain task.

Similarly, a model training task often employs dynamic batching [38] to improve the training speed and model accuracy, such
that the batch size can change between iterations or epochs during training. As a result, memory requirements may need to be
adjusted. In addition, a larger batch size presents opportunities for intra- and inter-node parallelization, such that having more
workers can benefit the training process. With dynamic batching, the batch size of different iterations or epochs changes during the
training process. This in turn changes the memory demands as well as scaling potential of the training task, e.g., larger batch size
takes more advantage of both intra- and inter-node parallelization and hence could benefit from having more workers. For these
reasons, modern ML workflows often have dynamic resource demands and require effective auto-scaling for optimal execution.
SMLT is designed to handle such dynamic resource requirements, and we demonstrate its effectiveness after applying it to NAS and
dynamic batching systems in Section 5.

2.2. Machine learning on the cloud

Many existing ML systems for training large-scale models require a significant amount of computational resources that may not
e available in a user’s own infrastructure. Cloud computing and MLaaS systems can address this problem [39]. Hereafter, we briefly

describe some well-known solutions.
Infrastructure-as-a-Service (IaaS). Cloud providers offer virtual machines (VMs) with a wide range of computational capabili-

ties. This scheme is known as Infrastructure-as-a-Service (IaaS). IaaS provides on-demand resources with a time-based cost model.
In an IaaS environment, users are fully responsible for deploying, managing, and provisioning the compute resources based on
their requirements. Although it is a flexible option for practitioners, the extensive resource management overhead and limited
scaling support make IaaS a less ideal candidate for training modern ML models, especially for ML practitioners with limited system
xpertise.
Machine-Learning-as-a-Service (MLaaS). To address the challenges of running ML tasks in an IaaS environment, cloud

providers offer Machine-Learning-as-a-Service (MLaaS) to provide additional support for ML tasks. Many commercial MLaaS systems
are still based on a pool of VMs with varying computational and communication capabilities, require a shared storage for training

3 https://github.com/xiaolongm0/Enabling-Scalable-and-Adaptive-Machine-Learning-Workflows-via-Serverless-Computing.
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Fig. 1. Scalability of Bert-Small and Bert-Medium using Siren [40].

data, and offer some degree of scalability. Although presenting a plethora of options to choose from [7,41,42], these platforms
equire users to manually configure the required resources. Furthermore, to cover dynamic resource requirements during ML

tasks and provide robustness against failures (e.g., out of memory), they typically require users to over-provision the configured
resources, incurring inefficient resource utilization and high monetary cost. These problems are exacerbated when the ML workflows
include continuous learning and training with continuously incoming training data. As a result, ML practitioners still lack a fully-
automated MLaaS solution to achieve dynamic resource allocation for various ML workflow phases with both performance and cost
optimizations.

Machine Learning with Serverless Computing. Function-as-a-Service (FaaS), along with the Container-as-a-Service (CaaS) with
a full-automation capability, are widely-realized forms of serverless computing and have been gaining popularity in both industry
and academia. The elastic nature and the fine-grained resource management make these serverless realizations attractive to many
application developers, including ML design and training developers. Besides removing the burden of resource management and
scaling from ML developers, they also offer a flexible billing model and the continuously-improved execution startup delays [43–45].

In fact, FaaS has been actively studied for ML model serving [15,36] and ML training [21–23,40,46]. Although it is easy to see
that model serving can benefit from FaaS’ advantages (e.g., scalability, billing flexibility), the benefits for ML training are still not
clear. Cirrus [22] is a specialized ML framework that addresses the resource limitations (e.g., memory, storage) in FaaS environments
nd applies it to linear regression. Siren [40] showcases that cost efficiency and training speed can be improved by adjusting the

number of workers during different phases of training via reinforcement learning and using the MNIST model with a maximum of
10 workers.

Although these frameworks demonstrate that FaaS can be a viable alternative for ML training, their evaluation with small models
nd limited resources raises questions about the feasibility of training large-scale models with FaaS and serverless computing. It

would not be surprising that increasing the number of training workers to process large ML models will significantly increase the
communication overhead, the training time and monetary cost. For example, in a recent study, Jiang et al. [23] compare IaaS and
FaaS platforms, and highlight issues in serverless settings that affect the performance and cost of ML training.

To confirm these questions, we evaluated two natural language models (i.e., BERT-small [47] and BERT-medium [48]) using
these two approaches.4 Fig. 1 shows that the computation time decreases with increasing number of workers in Siren [40], but so
does the communication time due to the use of S3 for storing intermediate parameter updates. With more than 20–40 workers, the
total training time increases due to the communication overhead. Fig. 2 shows a similar behavior for Cirrus [22]. These experiments
show that communication can be a major bottleneck for training complex ML models in a serverless environment.

We further evaluated the performance of four models with varying number of workers between 10 to 200 and with three different
sizes of memory allocation to these workers (3 GB, 6 GB and 10 GB). Figs. 3(a) and 3(b) show the training time distribution and the
ost distribution per iteration, respectively. These results highlight that an incorrect selection of workers and inefficient resource
llocation to them can have significant impacts on training time and cost in a public serverless environment. Furthermore, the

4 Note that Siren’s source code is not available, and Cirrus does not support the ML frameworks for these models. Nevertheless, we replicated these approaches
o the best of our abilities.
4 
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Fig. 2. Scalability of Bert-Small and Bert-Medium using Cirrus [22].

Fig. 3. Per iteration computation time and cost distributions with varying deployment configurations for Bert-Medium, Bert-Small, Resnet-18 (Tensorflow), as
well as Resnet-50 (MXNet).

high variance in these values shows that it is not trivial to find the ‘right’ values for these parameters. Cirrus [22], Siren [40] and
ambdaML [23], however, assume that the users know these values before running the training. In other words, these systems do

not support dynamic resource allocation during training, leading to sub-optimal training time and causing higher monetary costs.
In summary, these systems lack support for the needs of modern ML workflows with large models, dynamic resource requirements
and user-centric training goals.

3. SMLT design

In lieu of the aforementioned shortcomings to support dynamic resource requirements, user-centric deployment goals and large-
cale ML models, we propose SMLT. In this section, we explain the rationale behind the SMLT design, present our goals, and then
escribe the building blocks to achieve them.

Our general aim is to design a generic framework that provides the easy-to-use functionality for ML practitioners to design
and train their ML models efficiently and economically on a public cloud serverless platform. The framework should allow ML
practitioners to focus on business logic while at the same time truly realizing the transparency and scalability promises of serverless
omputing. In particular, we design our building blocks to target three main goals.

• We aim to offer an overarching view of dynamic ML workflows to enable adaptive and efficient serverless scaling on public
cloud platform.

• We aim to support user-centric deployment goals (e.g., training deadlines and budget limits) for running ML workflows on
public serverless platforms.

• We aim to achieve scalability by enabling the handling of large and sophisticated ML workflows while abstracting out the
limitations of the underlying public serverless platforms.
5 
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3.1. Overarching view and dynamic adaptation

The underlying primitives in existing serverless platforms can support individual ML training tasks well. However, for modern
dynamic ML workflows, such as dynamic batching [11] and NAS [4], today’s serverless systems often fall short. The fundamental
eason is the lack of a component that maintains an overarching view of the training dynamics of ML tasks. For example, when the

batch size or model size changes over the training process, it may inevitably change the scalability and resource demands of the
training task. Not adjusting the underlying serverless resources accordingly may cause performance and/or cost issues. The stateless
ature of public serverless platforms, and hence their inability to carry over the training dynamics across function invocations,
reates a challenge for supporting such an adaptation mechanism.

To solve this challenge, we propose a training dynamics aware design to enable an overarching view of ML workflows. To keep
rack of the training progress, we propose a monitoring component (called Task Scheduler in Section 4.1) to collect the training

information (e.g., time taken to complete one iteration, batch size changes), and maintain it across function invocations. The task
scheduler continuously monitors for changes in training information, and upon detecting change, activates an optimizer to determine
the new resource allocation to meet the optimization targets. The scheduler then allocates resources according to the newly optimized
resource decisions, such that the training can continue with new resources (e.g., number of workers, memory configuration).

3.2. User-centric deployment and execution

To guide the above process, we employ a user-centric deployment and execution approach. ML practitioners often have different
oals in ML model training, such as meeting deadlines or staying within a monetary budget. These desired goals are not supported
y today’s MLaaS platforms (see Section 2). The serverless computing paradigm creates an unprecedented opportunity to provide
hese goals because of its advantages in scaling and resource management. By embracing serverless computing, SMLT alleviates the

burden of reserving and scheduling resources from ML practitioners, and allows them to focus on their ML model development,
hile guaranteeing their time and budget constraints are met.

Definitions and Terminology. Our approach takes a user’s requirements as input to optimize the deployment and execution of ML
tasks. Without loss of generality, we use dynamic batching as an example to illustrate our approach. Let  = {𝑏1, 𝑏2,… , 𝑏𝑛} denote
the batch scheduler, where 𝑏𝑖 denotes the batch size at the 𝑖th epoch. Let  = {𝑐1, 𝑐2,… , 𝑐𝑛} denote the system configuration across
epochs as a tuple of scale-out factor (number of workers 𝑐worker

𝑖 ) and scale-up factor (memory size 𝑐memory
𝑖 ), i.e., 𝑐𝑖 = ⟨𝑐worker

𝑖 , 𝑐memory
𝑖 ⟩.

Let 𝑇() denote the training time using configuration  for a given batch scheduler , and 𝑆() denote the monetary cost using
configuration  for a given batch scheduler . In addition, let 𝑇𝑚𝑎𝑥 denote the user-specified training deadline and 𝑆𝑚𝑎𝑥 denote the
user-specified monetary budget for training.

Example Scenario. We give an example scenario where a user wants to meet the training deadline while minimizing the cost. This
scenario can be modeled as an optimization problem as follows:

minimize 𝑆()

subject to 𝑇() ≤ 𝑇𝑚𝑎𝑥.
(1)

To obtain the training cost 𝑆𝑗
(𝑖) of a particular deployment configuration 𝑖 under a given batch scheduler 𝑗 , we need to

first profile the training time per iteration (including the training throughput and communication time), and then use the cloud cost
model to calculate the monetary cost. However, to exhaustively search the training cost of all possible deployment configurations
to identify the minimum cost is prohibitively expensive as we need 𝑛() number of profiling experiments. Therefore, we need
an efficient optimization algorithm to explore the search space to reduce the optimization overhead. While there are plenty of
optimization algorithms in the literature which could potentially be adopted here, we propose a customized Bayesian optimizer,
inspired by [8], to efficiently solve this optimization problem.

There are other example scenarios with user-centric goals. For example, users may want to minimize training time with a budget,
r users may simply want to finish training as fast as possible.

Bayesian Optimization. There are a few classic optimizers (e.g., Bayesian optimization and reinforcement learning) to solve the
aforementioned optimization problems. We compare their performance in terms of accuracy and training overhead in Fig. 4. We
use the reinforcement learning model architecture proposed in [49]. It can be observed that, for the same prediction accuracy
demonstrated in Fig. 4(a), reinforcement learning incurs 3× overhead compared to Bayesian optimization. In light of this result,

e choose Bayesian optimization over reinforcement learning [22] to speed up the optimization process because it is much lighter-
weight, and importantly, does not require additional training. This makes it more suitable for our goals in improving training speed
and increasing cost-effectiveness.

The Bayesian Optimizer searches for the optimal deployment by profiling the throughput of the system under randomly chosen
configurations. Based on the profiled throughput results, the Bayesian optimizer estimates the most beneficial configuration to
profile next. This search is done in an iterative manner until the expected improvement is small enough or the predefined max
number of iterations is reached, thus finding the optimal configuration. In doing so, SMLT exploits the serverless paradigm and its
‘pay-as-you-go’ model with fine-grained resource allocations. SMLT’s approach differs from the approach described in [8], whereby
the Bayesian algorithm can run only once before the start of the ML task due to its high monetary cost associated with profiling in
 VM-based cloud infrastructure, thus leaving little budget for the actual training tasks.
6 
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Fig. 4. Comparison of Bayesian optimization and reinforcement learning in terms of accuracy and training overhead.

In its iterative configuration search, SMLT uses a two-dimensional search space where the worker memory size varies from 128
MB to 10 GB with an increment of 128 MB [50] and the number of workers varies depending on the model size and training
parameters. The cost function for a particular deployment configuration is set as 𝑖, and this cost function is specified as part of
user requirements like the example scenarios aforementioned.

We employ the widely-used Gaussian Process Regression [51] to calculate the posterior distribution. For the acquisition function,
e use the Estimation Improvement (EI) [52] since it requires no hyperparameter tuning. Specifically, our EI is defined as:

𝐸 𝐼(𝑖) = (𝑦𝑚𝑎𝑥−𝜇(𝑖))𝛽(𝛾(𝑖)) +𝛿(𝑖)𝜃(𝛾(𝑖)), where 𝑖 is a deployment configuration with 𝑚 memory sizes and 𝑛 number of workers,
nd 𝑦𝑚𝑎𝑥 is the current lowest value from all explored tuples. 𝜇 and 𝛿 are the predictive mean and standard deviation functions,

with the 𝛽 and 𝜃 being the predictive cumulative distribution function of standard normal and the probability density function of
tandard normal, respectively.

Based on the output of the Bayesian optimizer, our task scheduler deploys the training task accordingly with the optimized
number of workers (scale-out) and the optimized worker memory configuration (scale-up). It is worth noting that, different stages
of a training task may have different performance and resource requirements (Section 2). Therefore, our optimizer is designed to
onsider these dynamic resource requirements during training to improve the overall performance and optimize the resource usage
uring training. These optimizations are made possible by our user-centric deployment module and the on-demand scalability, as

well as the pay-as-you-go billing model provided by serverless computing; thus, enabling us to provide cost-efficient solutions that
honor user-specified training deadline and budget requirements.

Altogether, SMLT provides significant advantages over existing MLaaS platforms and other serverless ML training frameworks,
and provides user-centric deployments and executions in a fully-automated, scalable, and adaptive fashion. As a result, SMLT not
only improves training performance in a public serverless environment while meeting user requirements, but more importantly,
allows users to focus on the design and logic of ML algorithms, thus enhancing their productivity.

3.3. End-to-end scalability

Using serverless primitives to design an ML training platform presents unique challenges for scalability. Here, we briefly describe
hese challenges and our approaches to address them. We will elaborate upon the end-to-end design of SMLT in Section 4.

Challenge 1: Communication Overhead. Serverless frameworks are designed for stateless, short-duration compute tasks. For
example, serverless function instances such as AWS Lambda do not allow inbound connections [12]. More specifically, the two
unique characteristics of a serverless platform are the stateless nature of a serverless function and the limited communication
performance across functions. These characteristics force serverless ML platform designers to utilize an external storage for model
ynchronization. Hence, the communication load/pattern generated by the chosen model synchronization scheme as well as the

choice of the storage service play a crucial role. If not chosen properly, the communication overhead can easily overshadow the
gains achieved via splitting computation across a large number of serverless workers, as demonstrated in Figs. 1 and 2.

Approach: Hybrid Storage Enabled Hierarchical Model Synchronization. We observed from our experimentation that a hybrid
storage service combined with a hierarchical synchronization mechanism scales well for large ML models. Even though the
synchronization is built atop of the commonly used scatter reduce approach (which is also adopted by LambdaML [23]), our
design considers the unique system challenges of public cloud serverless: (1) missing a fast shared intermediate storage for storing
intermediate data in serverless function, which is critical for the model aggregation since the gradient partitions need to be stored and
retrieved quickly; (2) limited network bandwidth of individual serverless function, which is too slow for transferring the gradients
between serverless function and shared intermediate storage.

There is a large amount of data generated and used in ML tasks. Such data falls broadly into two types according to their
sensitivity to latency. (1) The access to the first type of data is latency sensitive, e.g., the metadata containing the gradient-
worker mapping information, the gradients produced during each training iteration, etc. For this type of data, we employ a fast
storage medium to satisfy the latency-sensitive demands of the synchronization scheme. In particular, an in-memory key–value
store (e.g., Redis) can be used as a parameter store to store this type of data. (2) The access to the second type of data is much more
infrequent. For example, the training code and dataset are accessed only few times during an epoch or after every epoch. To strike
7 
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Fig. 5. Hierarchical model synchronization mechanism.

a balance between performance and cost, we use a cloud-based object store (e.g., AWS S3). We present the details of our hybrid
storage in Section 4.3.

Fig. 5 presents our hierarchical synchronization mechanism. After each training iteration, the hierarchical synchronization
mechanism takes the model gradients generated by each worker as input. The shard generator, residing in each of the 𝑛 workers,
divides the input gradients into 𝑚 equal-sized shards 1 . These shards are uploaded to the parameter store which acts as a
communication intermediary between the stateless serverless workers 2 . Each serverless worker also acts as a shard aggregator. Each
shard aggregator is responsible for downloading and aggregating its assigned shards generated by all workers 3 . For simplicity, we
assume that 𝑛 equals 𝑚.5 As a result, the ‘shard aggregator 1’ in Fig. 5 is responsible for aggregating the first shard from all workers
to perform a mean operation. The resulting value, aggregated shard, is then uploaded to the parameter store by each shard aggregator
4 . Finally, the global aggregator residing in each worker downloads all the aggregated shards, and reconstructs the updated model
for the next iteration 5 . We describe in detail when and how this scheme is used in Section 4.2.

Challenge 2: Public serverless Platform Quirks. Serverless platforms typically limit the maximum duration of each executing
function (e.g., 15 min in AWS Lambda [53]). Getting around this limitation as well as recovering from faults during function
execution require keeping track of function states at regular intervals and restoring state during a restart. In addition, each
function invocation may have non-trivial initialization overheads, making it important to minimize the number of restarts a function
encounters. For example, initialization overheads could arise due to model loading within the function code itself. Other overheads
include anomalous serverless platform behavior (which we encountered during our experiments on AWS Lambda), such as high
invocation delays while invoking functions asynchronously and while invoking via the ‘Map’ state in AWS Step Functions [54].
Section 4.1 presents additional details.

Approach: Task Scheduler. This challenge motivates us to create a coordination mechanism to provide the maximum flexibility and
public cloud serverless platform independence, while invoking and monitoring function instances. To enable this coordination, we
use a component called task scheduler in our approach. The task scheduler monitors the progress of each function instance, enables
function instances to run for the maximum allowed execution duration, and performs the checkpointing for restarting functions
(either due to faults or due to execution duration limits). We detail the task scheduler in Section 4.1.

4. SMLT framework

In this section, we describe the details of the SMLT framework. Broadly speaking, SMLT adopts an architecture similar to a
parameter server based distributed training using a fleet of stateless serverless functions. Although some existing frameworks [22,
23,40] use a similar architecture, SMLT additionally offers the capability of intelligently and dynamically determining resource

5 If 𝑚 is greater than 𝑛, then each worker is responsible for aggregating multiple shards. Choosing 𝑚 less than 𝑛 will cause some workers to be idle during
aggregation, which will affect performance.
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Table 1
Modules of SMLT and their functionalities.
Module Submodule Functionality

1 End client

1a Artifact manager Uploads user’s training code and training data to the cloud-based
object store 3a .

1b Resource manager Allocates resources for training workers 2 based on user-centric
requirements (e.g., number of workers, and memory per worker).

1c Task scheduler Invokes workers 2 for training, keeps track of training progress, and
restarts failed workers when necessary.

2 Worker

2a Data iterator Loads training data to the local storage of the function from the object
store 3a .

2b Minibatch buffer Keeps track of the training data for every iteration used by the trainer
2c .

2c Trainer Runs the user-defined training code using the training data from the
minibatch buffer 2b .

2d Hierarchical aggregator Updates user model parameters after every iteration through the
parameter store 3b .

3 Storage
3a Object store Stores training code and training data.

3b Parameter store Stores intermediate training parameters of all workers 2 after every
iteration.

Fig. 6. Workflow of SMLT. Solid lines indicate data transfer, and dashed lines indicate control signals.

allocation (i.e., number of workers, memory sizes) that enables efficient and user-centric training of the state-of-the-art ML models
with billions of learning parameters.

Table 1 gives an overview of SMLT, which consists of three main system modules. The end client is responsible for code
deployment, resource allocation based on user-centric deployment and execution configurations, and ML task scheduling. The
workers are mainly responsible for training and updating the global model. In storage, following our hybrid approach, the
parameter store maintains the frequently-accessed intermediate model updates between workers, and the object store maintains
the infrequently-accessed training code and data. Fig. 6 shows the interactions between these different modules.

4.1. End client

The end client provides an interface for users to interact with the cloud infrastructure. In particular, the end client is responsible
for three tasks: (1) ML model and code deployment, (2) resource management which configures a deployment (e.g., number of
workers, per-worker memory size) based on user-centric requirements and optimizations, and (3) scheduling tasks during training.
Each user has her own end client, which can be deployed either on a regular VM in the cloud or on a user’s local machine.
9 
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The end client has three submodules: artifact manager, resource manager, and task scheduler.

Artifact Manager. The artifact manager is responsible for packaging the training code and data supplied by the user as input to
SMLT, and uploading them to the object store (Step 1 in Fig. 6).

Resource Manager. The resource manager uses the training configuration (e.g., batch size) along with user-centric deployment
requirements as input, and will dynamically adapt the resources for optimal training (Step 9 ).6 Specifically, the resource manager
ontrols the number of workers involved in a training phase, as well as the memory allocated to each worker. The appropriate values

in different phases of the training are provided by the Bayesian optimizer according to user-centric goals and the training progress
(see Section 3.2), and then shared with the task scheduler (Step 10). The user can also override these values manually. Note that,
ommercial public serverless platforms typically provide a single control parameter for resources. For example, in AWS Lambda,
ther resources (e.g., number of computing cores, network bandwidth) are proportionally assigned by the allocated memory of a
unction instance.

The optimal training depends on the user’s training requirements, training dataset, model size, and the cloud infrastructure’s
rofile. SMLT is capable of optimizing the resources during the hyper-parameter search, dynamic batching and online learning for
peed and cost-effectiveness. The optimization and adaptation of resources are triggered every time there is a change in training
onfiguration obtained from the worker output (e.g., batch size or hyper-parameter change).

Task Scheduler. After the resources are determined by the resource manager, the task scheduler starts the training workers (Step
2 in Fig. 6) and will track their progress (Step 8 ). When the workers finish an iteration, their results are collected and fed back
o the resource manager to be used in the Bayesian optimizer (Steps 8 and 9 ).

Tracking the progress of the workers by a separate task scheduler is important for three reasons: First, due to the stateless nature
f the serverless workers, the used ML model needs to be obtained, and the ML framework used in the training code needs to be
nitialized by the worker. This initialization overhead depends on the model size and the specific ML framework, and can take

multiple seconds (e.g., 4 s for Resnet-18 on Tensorflow) that quickly accumulate with function restarts. Therefore, a separate task
scheduler can maximize the utility of each training worker by running it close to the limit of the function execution duration enforced
y the underlying public cloud serverless platform (e.g., 15 min on AWS Lambda) and across multiple iterations; therefore, the
nitialization overheads are amortized. After a worker is stopped, the task scheduler ensures that a new one is started and continues
rom the last iteration checkpoint.

The second reason for tracking the progress of each worker by a task scheduler is fault tolerance. A worker failure can derail
the progress of the training. The task scheduler, with the help of the resource manager, detects failures by observing each worker’s
output (Step 7b): The resource manager checks the output of each worker to determine whether a failure occurred during the
training iteration. A successful update of the gradient parameters by a worker sets a flag in the output. The lack of this flag signals
a worker failure, causing the task scheduler to restart it.

Finally, there may be hidden overheads specific to the underlying public serverless platforms. For example, when we experi-
mented with serverless functions invoking other serverless functions asynchronously in AWS Lambda as utilized in LambdaML [23],
we observed undocumented invocation delays for the new functions. Another example of such a hidden overhead is the limit on
the concurrency of a function within the ‘Map’ state of a state machine in AWS Step Functions, even when the concurrency is set
to be ‘infinite’ [55].7 A separate and independent task scheduler in SMLT overcomes these limitations by treating every function
invocation as a separate invocation and tracking them accordingly, and forcing the serverless platform to do the same.

4.2. Serverless worker

The main responsibility of each SMLT worker is threefold: (1) obtain the training data, (2) run the training code, and (3) update
he model. Each worker consists of the following four submodules that handle these tasks.

Data Iterator. Due to the limited storage space within serverless functions, similar to the existing work [22,40], SMLT stores the
training data in external cloud storage like AWS S3 or EFS. The data iterator submodule within each worker is responsible for
fetching the appropriate subset of the training data from the external storage at the beginning of every training epoch and storing it
within the worker’s local disk storage (Step 3 in Fig. 6). Furthermore, the data iterator also tracks which training data points have
een processed by a worker within an epoch, in case the worker needs to resume training after a restart (due to either a failure or
n execution time limit).

Minibatch Buffer. The minibatch buffer is responsible for loading a minibatch of training data from the local storage to the memory
of the worker during each training iteration (Step 4 ). The minibatch size varies based on the number of workers and the global
batch size during the training.

Trainer: The trainer submodule runs the user-defined training code over the minibatch of the training data (Step 5 ). The training
ode carries out the forward and backward passes to generate the gradients for the current iteration. These gradients are then
ggregated with the gradients from other workers via SMLT’s hierarchical model synchronization (Step 6 ).

Hierarchical Aggregator. The hierarchical aggregator submodule at each worker is responsible for synchronizing the gradients
among different workers. As described in Section 3.3, the hierarchical aggregator at each worker first divides the gradients produced

6 Except for the initial configuration, where the training resources are arbitrarily assigned within the allowed bounds.
7 Since the writing of this paper, the documentation has been updated to reflect that it is not guaranteed to achieve a requested concurrency.
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by the worker into shards, and uploads them to the parameter store (e.g., Redis). Each worker downloads the shards it is responsible
or from the parameter store, aggregates them into a single shard, and uploads the aggregated shard back to the parameter store.

Finally, the aggregator at each worker downloads all aggregated shards and produces the updated model for the next iteration (Step
7a).

4.3. Hybrid storage

Due to the restriction on inter-communication between Lambda functions, a shared storage solution is required. The choice of
he storage system plays a crucial role because it is the main communication mechanism among serverless workers. In SMLT, we
mploy a hybrid approach that uses a cloud object store, e.g., AWS S3, for infrequently accessed data (few times or after every
poch), and an in-memory key–value store, e.g., Redis, for frequently accessed data (after each iteration). This hybrid approach
atches the training phase to a cost-effective object store for bulk data access, while at the same time matching the model update
hase to a fast in-memory key–value store for frequent data access.

Object Store. The object store hosts the training code and training data provided by the user and uploaded by the end client. The
training code uploaded by the end client is accessed a few times at most (e.g., at the beginning of training, or after restarts from
failures). Similarly, training data, which is accessed relatively infrequently after every epoch, is also hosted in the object store. Using
he object store provides elasticity and cost efficiency for storing such types of infrequently-accessed data.

Parameter Store. In contrast, workers access gradient data much more frequently (i.e., after every iteration). During the hierarchical
odel synchronization, the speed of access to the updated and sharded gradients becomes critical for training speed. We use an

n-memory key–value store (e.g., Redis) for this purpose. To avoid the extra cost of running the parameter store unnecessarily
uring the entire training, we use the light-weight containers from a cloud service (e.g., AWS Fargate, ECS), and keep them only

alive during the model synchronization phase.

5. Evaluation

In this section, we evaluate SMLT’s capability to enable scalable and adaptive ML training via serverless computing on public
cloud. We first demonstrate the effectiveness of the hierarchical model synchronization. Next, we present two different user-centric
deployment scenarios. We then validate the performance of SMLT for dynamic batching and online learning. Finally, we show how
SMLT can alleviate the burden of dynamic resource provisioning from ML engineers and practitioners during model design and
building via an autonomic technique like neural architecture search (NAS).

5.1. Experimental setup

We evaluate SMLT using three popular ML training frameworks: Tensorflow 2.0 [26], MXNet 1.7.0 [28] with gluon-cv 1.4.0,
and Pytorch 1.8.0 [27]. For benchmarking tasks, we use the following ML models:

• ResNet-18 (18 layers, 11 million parameters) and ResNet-50 (50 layers, 23 million parameters) [2] with residual functions for
image classification.

• Bert-Small [47] (66 million parameters) and Bert-Medium [48] (110 million parameters) for natural language processing.
• Atari break out game (50 million frames [56]) for reinforcement learning (RL).

In all experiments, we split the training dataset into smaller sets (up to 250 MB in size) and store them on AWS S3, which serves
as our object store. We vary the memory allocated to training workers for each experiment based on the model size being evaluated.
Unless otherwise noted, for hierarchical model synchronization in SMLT, we use the in-memory Redis key–value store hosted on
AWS ECS, which serves as our parameter store. The AWS S3, AWS ECS, and the Lambda functions for workers are all deployed in
the same AWS region, i.e., us-east-1. For cost calculation, we use the AWS cost formula along with the cost of object store, and
parameter store cost associated with each method.

5.2. Effectiveness of hierarchical model synchronization

We evaluate the effectiveness of SMLT’s proposed hierarchical model synchronization by comparing the communication time
between SMLT and the two baselines, i.e., Siren [40] and Cirrus [22]. Fig. 8 shows the communication time as a function of
he number of workers (scale-out) per iteration for all 5 benchmarks, respectively. We observe that for all three systems the
ommunication time increases linearly as the number of training workers increases. This increase is due to the fact that more workers

will produce more gradients that need to be transferred from the workers to the aggregator via the external storage. However, the
increase in overhead for SMLT is substantially lower than Siren and Cirrus, thanks to the hierarchical aggregation mechanism along
with the fast parameter store, which together significantly reduce the communication overhead in a serverless environment.

For 2 representative benchmarks, we further breakdown the communication time into individual communication steps during
each training iteration, as shown in Fig. 7. While using SMLT, we denote UL-Shard as the time taken for the shard generator to split
the gradients and upload them to the parameter store, DL-Shard as the time for the shard aggregator to download and aggregate
the shards to form the aggregated shards, UL-aggr as the time taken for the shard aggregator to upload the aggregated shards, and
11 
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Fig. 7. Communication time breakdown comparison of SMLT, Cirrus and Siren.

Fig. 8. Per iteration communication time comparison between SMLT, Cirrus and Siren.

DL-grad as the time for the global aggregator to download the aggregated shards (see Fig. 5 for the detailed process description).
For Siren and Cirrus, UL-grad refers to the time taken for each worker to upload gradients to the cloud storage, and DL-grad refers
to the time taken for workers to download the parameters of all other workers for updating the model after every iteration. From
Fig. 7, one can see that, for both Siren and Cirrus, the main bottleneck often is the DL-grad step. On the other hand, SMLT’s sharding
approach for uploading and downloading gradients results in a significant reduction of the DL-grad overhead.

It is worth noting that, in the case of the RL-based Atari model, the size of the uploaded data is larger than the Resnet-50 model.
The longer uploading time is due to the large simulation data shared by each worker after every iteration. We observe the impact
of larger uploaded data in Fig. 7[d-f]. In the case of Siren, this impact is more pronounced, reflecting the limitation of a centralized
parameter server.

5.3. Intermediate storage: S3 vs. Redis

Existing methods such as Cirrus [22] and 𝜆DNN [57] propose to use S3 as storage system for storing model parameters during
the intermediate steps for model aggregation. However, proper selection of the cloud storage systems is critical to the scalability
and cost effectiveness. With the increase in number of worker the communication overhead can contribute significantly to overall
training time. In this section To demonstrate the impact of storage system we compare implementation of SMLT using S3 and
Redis key–value store respectively as the underlying storage system. We deploy Redis on a cloud container service AWS ECS using
C4.4xlarge instances type. To reduce the randomness of the network delay, we place the ECS containers and our worker function
instances in the same virtual private cloud. Fig. 9 shows the comparison results. We can see that using Redis can significantly reduce
he communication time compared to using S3 as storage system. In the best case scenario with 10 workers Redis based storage

system improves the overall communication time by 8× and with 100 workers it achieves almost 6× improvement over S3. This
further improves the overall training time and cost, as cost of serverless functions are directly correlated with the total run time.
imilarly, pay-per-use cost model of AWS ECS also contributes towards cost effectiveness.

5.4. User-centric deployments

We use the following two scenarios (exemplified in Section 3.2) to evaluate our user-centric deployment and execution approach.
The scenario 1 is to, given a user-specified training time limit, optimize the monetary cost. The scenario 2 is to, given a user-specified
monetary budget, minimize the training time. The results are shown in Figs. 10 and 11, respectively.
12 
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Fig. 9. Performance comparison of Bert Medium Redis vs. S3 as an external Storage.

Fig. 10. (Scenario 1) Minimize the monetary cost with a 1-hour training time limit for Bert-Medium with Pytorch. Note that, SMLT has profiling time and cost
while other frameworks do not. For a fair comparison, we also demonstrate the profiling time and cost in SMLT.

Fig. 11. (Scenario 2) Minimize the training time with a $50 training cost budget for Bert-Medium with Pytorch. Note that, SMLT has profiling time and cost
hile other frameworks do not. For a fair comparison, we also demonstrate the profiling time and cost in SMLT.

In Scenario 1, only SMLT meets the user-specified time limit of completing 50 epochs within an hour, as Siren and Cirrus do
ot consider such user requirements. SMLT also has the lowest cost, thanks to its optimized deployment and execution. Fig. 10 also

shows that SMLT would have been able to achieve the best accuracy with the most number of epochs at the lowest cost, if we
ad stopped training at the time limit (i.e., 1 h). In Scenario 2, as shown in Fig. 11, all three frameworks meet the user-specified

monetary budget of 50$ for completing 50 epochs, although Siren and Cirrus achieve it by coincidence. SMLT achieves significantly
ower training time compared to the other two frameworks, because of its optimizations to match the user-specified budget.

These results validate that SMLT can meet the user-specified time and budget requirements while optimizing the monetary
cost and training time, respectively. This capability provides important practical benefits to ML practitioners compared to other
frameworks that are oblivious to user requirements.

5.5. Dynamic batching and online learning

To show how our task scheduler can exploit serverless computing’s ‘pay-as-you-go’ pricing model using the Bayesian optimizer,
we conduct experiments for two cases: dynamic batching and online learning. In these experiments, we compare SMLT with MLCD
(a VM-based MLaaS platform [8]), LambdaML [23], and the IaaS setup as described in [23], we employ the training of a single
ResNet50 model on the CIFAR-10 dataset, consistent with the settings used in LambdaML [23].

In the case of dynamic batching, the memory size and the number of workers can be scaled without restarting the worker
functions. As shown in Fig. 12(a), the profiling overhead, and the cost associated with it, in SMLT is significantly lower than in
MLCD. Although LambdaML may not perform as well as the IaaS setup, SMLT showcases that an ML training platform using public
serverless computing can provide a cost-effective and scalable solution.

In the case of online learning, due to the non-deterministic training time and the continuous resource provisioning, the cost for
LCD is higher than SMLT as shown in Fig. 12(b). Similarly, IaaS has high costs due to its continuously running, but at times idle,

VM resources. On the other hand, LambdaML and SMLT showcase how an ML training platform can exploit the cost-effectiveness
of public serverless computing.
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Fig. 12. Cost comparison of profiling and training via our Bayesian optimizer, for dynamic batching and online learning, using Resnet-50 with Pytorch.
Experiments using Resnet-18 with Tensorflow produced similar results.

Fig. 13. Throughput comparison for dynamic batching.

Note that, SMLT offers an adaptive approach for dynamic workload conditions, whereas LambdaML does not. To demonstrate
this crucial difference, we conduct another experiment and compare SMLT’s task scheduler to LambdaML (with a randomly-assigned,
fixed resource allocation scheme).

Fig. 13(a) illustrates how the batch size changes over time. Fig. 13(b) depicts the corresponding worker changes that adaptively
adjust in response to the batch size changes. Furthermore, Fig. 13(c) presents a comparison of training throughput, measured as
rocessed data points per second, over time between our SMLT method and LambdaML.

We assume that the user optimizes the resource allocation for the initial training configuration (i.e., batch size). Therefore, SMLT
and LambdaML achieve similar training throughput initially. However, when the batch size changes, LambdaML’s user-defined
configuration observes sub-par training performance. In contrast, SMLT adjusts to the varying training parameter dynamically. We
also observe the variation in throughput when the batch size changes are detected by the task scheduler via monitoring the workers.
Cost-wise, SMLT also reduces the training cost by over 30% compared with LambdaML thanks to its dynamic resource allocation
via the task scheduler.

5.6. Neural architecture search

Neural architecture search (NAS) often deploys up to hundreds of training jobs in parallel or series to search for a well-performing
model architecture. In such scenarios, each training job generally deploys a different model architecture as part of the exploration
phase. As such, the amount of resources required is dynamic since it depends on the size of the model being deployed. We
demonstrate the adaptive behavior of SMLT for optimal resource allocation for the widely-used NAS framework called ENAS [58].
Figs. 14(a) and 14(b) display model size over time and the corresponding changes in number of workers, respectively, Fig. 14(c)
demonstrates the throughput comparison between SMLT and LambdaML. Similarly, We assume that the user optimizes resource
llocation for LambdaML based on the first model. Therefore, both SMLT and LambadML achieve similar throughput at the beginning
f the exploration. However, as the model size changes, SMLT optimizes the resource allocation accordingly, resulting in improved
hroughput. SMLT achieves 3× cost savings compared to LambdaML through its dynamic resource allocation scheme.
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Fig. 14. Throughput comparison for ENAS.

6. Related work

Like in any infrastructure-related problem, achieving a scalable and cost-effective solution becomes important for running ML
orkflows in the cloud. Earlier designs for MLaaS focus on addressing scalability [59–61], privacy [62,63], and ease-of-use [64,65],

but not on cost-effectiveness. Major cloud providers, like Microsoft Azure [41] and AWS [42], have extended their existing statically-
riced cloud platforms to commercial MLaaS without offering user-centric deployment guarantees. Similarly, recent academic

efforts [10,66–68] utilize traditional cloud resources (e.g., VMs, containers) as their underlying platforms, but require extraneous
management policies or understanding the underlying resources as pointed out in [69,70].

Some systems attempt to tackle the dynamic resource demands of ML tasks for specific use cases. DynamoML [71] proposes
a set of online dynamic management techniques that perform scaling, job preemption, workload-aware scheduling, and elastic
GPU sharing for different parts of the ML development workflow consisting of modeling, training, and inference jobs. However,
DynamoML is designed for traditional cloud settings instead of serverless, which leads to coarse-grained resource allocation strategies
that are not suitable for a serverless setting. In addition, DynamoML requires prior knowledge of the workloads to be able to schedule
the resource allocation effectively, making it impractical for workflows with lots of diverse workloads and workloads without prior
knowledge. Take the NAS workflow as an example, it contains many potential models with unknown resource demands. Schuler
et al. [72] uses reinforcement learning for resource allocation in serverless, but it requires expensive training and tuning of the
reinforcement learning models. Our experimental results show that the simpler and faster Bayesian based approach proposed in
his paper works equally well but much more lightweight, see Fig. 4. 𝜆DNN [57] also aims at using serverless infrastructure for

training ML models. However, this work focuses on training single static ML model instead of the dynamic workflow scenario that
this paper targets for. Barista [36] uses a workload characterization and prediction mechanism to maintain SLOs with minimal cost.

owever, Barista’s mechanisms are limited to the inference phase that has relatively less variation in resource dynamics than for
he training. In contrast to all of these systems, SMLT does not require prior knowledge of the workloads because of its adaptive
apability, does not require extra tuning of its scheduler supported by the Bayesian optimizer, and covers ML training phases that
ave more dynamic resource requirements.

7. Conclusion

We believe serverless plays a critical role in future machine learning routines. SMLT is the first fully-automated serverless
framework for scalable and adaptive ML design and training on public cloud. The key contributions of SMLT are to: (1) equip
public serverless platforms with an overarching view and dynamic adaptation capabilities for ML workflows, (2) offer user-centric
deployment and execution of ML tasks on serverless platforms, and (3) provide an open-source end-to-end framework that provides
fast gradient synchronization and addresses the key limitations of serverless ML platforms. Our extensive experimental evaluation
demonstrates the effectiveness and robustness of SMLT, which outperforms the state-of-the-art approaches by up to 8× faster in
training speed and 3× lower in monetary cost.
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